

PROGRAMME BOOKLET

B.Sc.(Hons.) Physics (PHU01) (Batch: 2019-2022)

(Syllabus: Scheme B)

Department of Physics Faculty of Applied Sciences Manav Rachna University

MANAV RACHNA UNIVERSITY

Vision

To educate students in frontier areas of knowledge enabling them to take up challenges as ethical and responsible global citizens

Mission

- To impart outcome based holistic education
- To disseminate education in frontier areas
- To produce globally competitive, ethical and socially responsible human resources
- To produce human resources sensitive to issues of Environment and Sustainable Development
- To develop Environment and Sustainable development as a thrust area of research and development.

Quality Policy

To continuously learn from the best practices, study role models and develop transparent procedures for empowerment of stakeholders.

Strategic Objectives

- To facilitate, enhance & promote innovation in curriculum design and delivery and have Outcome-oriented Learning Culture.
- To promote Research Environment and Management Practices.
- To enhance the quality of the student learning experience.
- To provide Resources and Infrastructure for Academic Excellence.

DEPARTMENT OF PHYSICS

Vision

• To educate the students in frontier areas of Physics enabling them to take challenges to solve the problem of the society.

Mission

- To inculcate outcome based holistic education in frontier areas of Physics.
- To develop competent physicists who address future issues of the society.
- To conduct interdisciplinary research in thrust areas.
- <u>To produce good quality human resources sensitive to environmental and sustainable development issues.</u>
- To produce globally competitive, ethical and socially responsible young minds.

B.Sc. (Hons.) Physics

Programme Educational Objectives (PEOs)

- The students are expected to understand the fundamentals, principles, concepts and recent developments in the Physics.
- The practical course is framed in relevance with the theory courses to improve the understanding of the various concepts in Physics.
- It is expected to inspire and boost interest of the students in Physics.
- To develop the power of appreciations, the achievements in science and role in nature and society.

ProgrammeOutcomes(POs)

- Fundamental understanding of the field
- Application of basic Physics concepts
- Linkages with related disciplines
- Procedural knowledge for professional subjects
- Skills in related field of specialization
- Ability to use in Physics problem
- Skills in Mathematical modeling
- Skills in performing analysis and interpretation of data
- Develop investigative Skills
- Skills in problem solving in Physics and related discipline
- Develop Technical Communication skills
- Developing analytical skills and popular communication
- Developing ICT skills
- Demonstrate Professional behavior with respect to attribute like objectivity, ethical values, self-reading, etc

Programme Structure (Complete Structure)

Semester -1

COURSE CODE	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective/ University Compulsory)	L	Т	P	NO. OF CREDITS
РНН104В-Т	Mathematical Physics-I	PH	CORE	3	1	0	4
РНН104В-Р	Mathematical Physics-I Lab	РН	CORE	0	0	2	1
РНН105В-Т	Mechanics	РН	CORE	3	1	0	4
РНН105В-Р	Mechanics Lab	РН	CORE	0	0	2	1
СНН105В-Т	Essential of chemistry	СН	CORE	3	1	0	4
СНН105В-Р	Essential of chemistry Lab	СН	CORE	0	0	2	1
CSH105B - T	Programming for Problem Solving Using C	CS	CORE	3	1	0	4
CSH105B-P	Programming for Problem Solving Using C	CS	CORE			2	1
HLS102	Communicative English	HL	GE	1	0	2	2
	TOTAL (L-T- P-/CREDITS)			14	4	8	22

Semester-II

COURSE	COURSE	OFFERING	COURSE	L	T	P	NO. OF
CODES	NAME	DEPARTMENT	TYPE				CREDITS
			(Core/Elective				
			/				
			University				
			Compulsory)				
PHH107B-T	Electricity and	PH	CORE	3	1	0	4
	Magnetism			3	1	U	4

PHH107B-P	Electricity and Magnetism Lab	РН	CORE	0	0	2	1
РНН108В-Т	Wave Optics	PH	CORE	3	1	0	4
PHH108B-P	Wave Optics Lab	РН	CORE	0	0	2	1
РНН109В-Т	Mathematical Physics II	PH	CORE	3	1	0	4
PHH109B-P	Mathematical Physics II Lab	PH	CORE	0	0	2	1
СНН137	Environmental Science	СН	UCC	2	0	2	4
	TOTAL (L-T- P-/CREDITS)			11	3	8	19
PHO219B	Post 2 nd sem Value added summer training course						02

Semester-III

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	L	Т	P	NO. OF CREDITS
РНН201В-Т	Quantum Mechanics	РН	3	1	0	4
РНН201В-Р	Quantum Mechanics Lab	РН	0	0	2	1
РНН202В-Т	Mathematical Physics III	РН	3	1	0	4
РНН202В-Р	Mathematical Physics III LAB	РН	0	0	2	1
РНН203В-Т	Electromagnetic theory	РН	3	1	0	4
РНН203В-Р	Electromagnetic theory Lab	РН	0	0	2	1
FLS101	Spanish I	CDC	1	1	0	2
FLS102	German I					

FLS103	French I					
	Open elective Odd Semester Basket/mini project-1	offered by different departments	1	0	2	2
	TOTAL (L-T-P/CREDITS)		11	4	8	19

			ELECTIVE	E BASKET						
SUBJEC T CODES	SUBJECT NAME	**OFFERING DEPARTME NT	*COURS E NATURE (Hard/Sof t/ Worksho p/ NTCC)	COURSE TYPE (Core/Electiv e/ University Compulsory)	L	Т	P	0	NO. OF CONTAC T HOURS PER WEEK	NO. OF CREDIT S
EDS288	Applied Philosophy	Education	Soft	ELECTIVE	1	0	2	0	3	2
EDS289	Applied Psychology	Education	Soft	ELECTIVE	1	0	2	0	3	2
EDS290	Applied Sociology	Education	Soft	ELECTIVE	1	0	2	0	3	2
MCS231	Basics of Economics	Management	Soft	ELECTIVE	1	0	2	0	3	2
MCS232	Introducti on of Finance	Management	NTCC	ELECTIVE	0	0	2	0	2	2
CDO203	Quantitati ve Aptitude-I	CDC	Soft	ELECTIVE						2
PHN204	Mini Project-I	Physics								

Semester-IV

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective / University Compulsory)	L	Т	P	NO. OF CREDITS
MAH411-T	Numerical Analysis	MA CORE		3	1	0	4
МАН411-Р	Numerical Analysis Lab	MA CORE		0	0	2	1
РНН205В-Т	Thermodynamics	PH	CORE	3	1	0	4
РНН205В-Р	Thermodynamics Lab	PH	CORE	0	0	2	1
РНН206В-Т	Solid State Physics	PH	CORE	3	1	0	4
РНН206В-Р	Solid State Physics Lab	PH	CORE	0	0	2	1
ECS306B	E-Waste Environmental Problems & Management/	ECE		1	0	2	2
CHS234	Environmental Ethics and Sustainable Development	СН		1	0	2	2
LWS323	Cyber crime and laws	Law	GE	1	1	0	2
PHN207	Mini Project	РН		0	0	4	2
CDO204	Quantitative Aptitude-II	CDC		2	0	0	2
CDO205	Career Skills - I	CDC		2	0	0	0

TOTAL (L-T-P-/CREDITS)			10	3	8	17
------------------------	--	--	----	---	---	----

Semester-V

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective / University Compulsory)	L	Т	P	NO. OF CREDITS
РНН301В-Т	Statistical Physics	РН	CORE	3	1	0	4
РНН301В-Р	Statistical Physics Lab	РН	CORE	0	0	2	1
РНН302В-Т	Digital Electronics	PH	CORE	3	1	0	4
РНН302В-Р	Digital Electronics Lab	РН	CORE	0	0	2	1
РНН303В-Т	Condensed Matter Physics	PH	CORE	3	1	0	4
РНН304В-Т	Modern Physics	PH	CORE	3	1	0	4
РНН304В-Р	Modern Physics Lab	PH	CORE	0	0	2	1
PHN305	Project Work (Minor)-3	РН	CORE	0	0	0	4
CDO303	Career Skill II	CDC		2	0	0	0
	TOTAL (L-T-P- /CREDITS)			12	4	6	23

Semester-VI

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective / University Compulsory)	L	Т	P	NO. OF CREDITS
РНН306В-Т	Electronic Devices	PH	CORE	3	1	0	4
РНН306В-Р	Electronic Devices Lab	РН	CORE	0	0	2	1
РНН310В-Т	Atmospheric Physics	РН	Elective (Any Two)	3	1	0	
РНН310В-Р	Atmospheric Physics Lab	РН		0	0	2	
РНН311В-Т	Computational Condensed Matter Physics	РН		3	1	0	
РНН311В-Р	Computational Condensed Matter Physics Lab	РН		0	0	2	10
РНН312В-Т	Laser Fundamentals and its Applications	РН		3	1	0	
РНН312В-Р	Laser Fundamentals and its Applications Lab	РН		0	0	2	
CDO305	Career Skill III	CDC		2	0	0	0
PHN307	Major Project	РН	CORE	0	0	16	8
	TOTAL (L-T- P/CREDITS)			9	3	6	23

Total Credits Scheme

S. No.	Semester	Contact Hours	Credits
1	Ι	26	22
2	II	22	19
3	Summer Training (Post II Sem)	42	2
4	III	23	19
5	IV	21	17
6	V	22	23
7	VI	18	23
	Total	174	125

B.Sc. (Hons.) Physics - PHU01 Semester-I

COURSE CODE	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective/ University Compulsory)	L	Т	P	NO. OF CREDITS
РНН104В-Т	Mathematical Physics-I	РН	CORE	3	1	0	4
PHH104B-P	Mathematical Physics-I Lab	РН	CORE	0	0	2	1
РНН105В-Т	Mechanics	PH	CORE	3	1	0	4
РНН105В-Р	Mechanics Lab	PH	CORE	0	0	2	1
СНН105В-Т	Essential of chemistry	СН	CORE	3	1	0	4
СНН105В-Р	Essential of chemistry Lab	СН	CORE	0	0	2	1
CSH105 B - T	Programming for Problem Solving Using C	CS	CORE	3	1	0	4
CSH105 B – P	Programming for Problem Solving Using C	CS	CORE			2	1
HLS102	Communicative English	HL	GE	1	0	2	2
	TOTAL (L-T- P-/CREDITS)			14	4	8	22

Detailed Syllabus

SEMESTER I

Course Title/Code	Mathematical Physics I (PHH104)	B-T)
Course Type	Core (Deptt./Allied)/Elective (Deptt./All	ied)/Audit
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To study differential equations of first and second ord calculus, gradient, divergence, and Laplacian in differ systems	_
	Course Outcomes (COs)	Mapping
CO1	Ability to solve the differential equations of first and second order and to apply them in order to model a known physical phenomenon mathematically	Skill Development
CO2	Ability to perform vector operations in Cartesian and Curvilinear coordinate systems and to develop an understanding of their applications in physical sciences.	Skill Development
CO3	Ability touse the fundamental theorem of calculus in order to calculate the definite integral of an integral function in one, two and three dimensions.	Skill Development
CO4	Ability to understand the orthogonal curvilinear coordinate system and to determine vector derivatives in Cartesian, spherical and cylindrical coordinate systems and to develop an understanding of their applications in physical sciences.	Employability
Prerequisites (if any)		

Section - A

Differential Calculus

Limits, Continuity, Average and Instantaneous Quantities, Differentiation, Functions and Plotting of Curves, First Order Differential Equations, Second Order Differential Equations, Homogeneous Equations with Constant Coefficients.

SECTION-B

Vector Calculus

Properties of Vectors under Rotations, Scalar Product and Its Invariance under Rotations, Vector Product, Scalar Triple Product and Their Interpretation in Terms of Area and Volume Respectively, Scalar and Vector Fields, Vector Differentiation: Directional Derivatives and Normal Derivative, Gradient of A Scalar Field and Its Geometrical Interpretation, Divergence and Curl of A Vector Field, Del and Laplacian Operators, Vector Identities,

Section - C

Integral Calculus

Surface and Volume Integrals of Vector Fields, Gauss' Divergence Theorem, Green's and Stokes Theorems and Their Applications (No Rigorous Proofs), Line, surface and volume integrals of Vector fields, Definition of Dirac Delta Function, Representation as Limit of a Gaussian Function and Rectangular Function. Properties of Dirac Delta Function.

Section- D

Orthogonal Curvilinear Coordinates

Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems.

Textbooks

1. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013,

7th Edn., Elsevier (Text Book)

B.Sc.(Hons.) Physics, Manay Rachna University

- 2. An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning
- 3. Differential Equations, George F. Simmons, 2007, McGraw Hill.
- 4. Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.

CO-PO Mapping

Courses Code	Course	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
DIIII104D	Mathe	CO1	3	-	1	3	-	3	3	-	1	3	-	-	1	-
PHH104B -T	matical Physics	CO2	3	-	ı	3	-	3	3	-	ı	3	-	-	ı	-
-1	-I	CO3	3	-	-	3	-	3	3	-	-	3	-	-	-	-
	•	CO4	3	-	-	3	-	3	3	-	-	3	-	-	-	-

Course Title/Code	Mathematical Physics-I Lab (PHH104B-P)										
Course Type	Core										
L-T-P Structure	0-0-2										
Credits	1										
Course Objective	To study differential equations of first and second ord calculus, gradient, divergence, and Laplacian in differ systems	,									
	Course Outcomes (COs)	Mapping									
СО	Ability to solve different mathematical and differential equations of first and second order using Scilab.	Skill Development									
Prerequisites											
(if any)											

List of Experiments

- 1- Plotting of Different functions.
- 2- To solve the first order differential equations.
- 3- To solve second order differential equations.
- 4- To calculate gradient of a function.
- 5- To calculate divergence of a function.
- 6- To calculate curl of a function.

Courses Code	Course	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH10 4B-P	Mathemat ical Physics-I Lab	СО	3	1	1	3	1	3	3	1	1	3	ı	ı	ı	-

Course Title/Code	Mechanics (PHH105B-T)	
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To study mechanics of particles and system of reference frames and study rotational dynamics, Os under central forces using laws of mechanics	-
	Course Outcomes (COs)	Mapping
CO1	Ability to describe rotational behavior of particle and system of particles by applying the conservation laws	Skill Development
CO2	Describe Simple Harmonic Motion (SHM), damped and forced oscillations	Skill Development
CO3	Apply on problems of central forces in the radial coordinate system.	Skill Development
CO4	Explain different types frames of reference and apply them for specific problems	Skill Development
Prerequisites (if any)		

Section-A

Fundamental of Dynamics and Work & Energy

Review of Newton's Laws of Motions, Dynamics of a System of Particles, Centre of Mass, Principle Conservation of Momentum, Impulse, Momentum of Variable-Mass System: Motion of Rocket.

Work and Kinetic Energy Theorem, Conservative and Non-Conservative Forces, Potential Energy, Energy Diagram, Stable and Unstable Equilibrium, Force As Gradient of Potential Energy, Work and Potential Energy, Work Done By Non-Conservative Forces, Law of Conservation of Energy.

Section-B

Rotational Dynamics

Angular Momentum of a Particle and System of Particles, Torque, Principle of Conservation of Angular Momentum, Rotation about a Fixed Axis, Moment of Inertia, Calculation of Moment of

B.Sc.(Hons.) Physics, Manay Rachna University

Inertia for Rectangular, Cylindrical, and Spherical Bodies, Kinetic Energy of Rotation, Motion of Flywheel

Section-C

Oscillations

Simple Harmonic Oscillations, Differential Equation of SHM and its Solution, Kinetic energy, Potential energy, and Total Energy and their Time Average Values, Damped oscillation, Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and quality Factor

Section-D

Motion under Central Forces

Concepts of Central Forces, Kepler's Laws of Planetary Motion, Gravitational Law, Gravitational Potential and Fields due to Spherical Shells and Solid Sphere, Gravitational Potential Energy and Escape Velocity, Two Particle Central Force Problem and Reduced Mass, Motion of Planets and Satellites.

Text and Reference Books

- 1. An introduction to mechanics by Daniel Kleppner, Robert J. Kolenkow (McGraw-Hill, 1973)
- 2. Mechanics Berkeley physics course, v.1: By Charles Kittel, Walter Knight, Malvin Ruderman, Carl Helmholz, Burton Moyer, (Tata McGraw-Hill, 2007) (Text Book)
- 3. Mechanics by D S Mathur (S. Chand & Company Limited, 2000)(Text Book)
- 4. Mechanics by Keith R. Symon (Addison Wesley; 3 edition, 1971)
- 5. University Physics by F W Sears, M W Zemansky and H D Young (NarosaPublishingHouse, 1982)

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	3	3	3	-	-	1	1	-	2	3	-	2	2	2
PHH10	Mechan	CO2	3	3	3	-	1	-	-	-	2	3	-	1	2	2
5B-T	ics	CO3	3	3	3	1	1	-	-	3	-	3	1	-	2	2
		CO4	3	3	3	-	1	-	1	-	2	3	-	2	2	2

Course Title/Code	Mechanics Lab (PHH105B-P))
Course Type	Core (Deptt.)	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To study mechanics of particles and system of reference frames and study rotational dynamics, Os under central forces using laws of mechanics	-
	Course Outcomes (COs)	Mapping
СО	Ability to describe and demonstrate rotational behavior of particle and system of particles by applying the conservation laws.	Skill Development
Prerequisites (if any)		

LIST OF EXPERIMENTS

- 1. To determine the acceleration due to gravity and velocity for a freely falling body, using Digital Timing Techniques
- 2. To determine the Moment of Inertia of a Flywheel
- 3. To determine the coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method)
- 4. To determine the Young's Modulus of a wire by Optical Lever Method
- 5. To determine the Modulus of Rigidity of a wire by Maxwell's needle
- 6. To determine the Electic Constants of a Wire by Searle's Method.
- 7. To study simple harmonic motion of mass spring system.
- 8. To study simple harmonic motion of compound pendulum.
- 9. To determine value of g using bar pendulum.
- 10. To determine the moment of inertia of a disc using Trosional pendulum.
- 11. To study damped oscillations of series LCR circuit.

Course Code	Course	Cours e Outco me	PO 1	PO 2		PO 4	PO 5	PO 6		PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH10 5B-P	Mechan ics	CO1	3	3	3	-	-	1	1	-	2	3	-	2	2	2

Course T	Citle/Code	Essenti	als of Chemistry (CHH105B-T)
Cours	е Туре		Core
L-T-P S	tructure		3-1-0
Cre	edits		4
Course (Objective		cnowledge of mathematics, physics and s to a wide variety of chemical problems.
Cor	urse Outcomes (Co	Os)	Mapping
CO1	Gain knowledge and phenomeno electronic struct	n related to	Skill Development
CO2	Understand vari titration and the	V -	Skill Development
CO3	Analyze the consolutions.	centration of	Skill Development
CO4	Evaluate the pH of salts.	of hydrolysis	Skill Development
CO5	Remember the capplication of cocatalysis.	_	Skill Development
CO6	Synthesize and of adsorption isoth		Skill Development
Prerequisites			

Section - A

ATOMIC STRUCTURE: Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Quantum numbers and their significance. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations, Variation of orbital energy with atomic number.

Bonding: Valence-Bond Approach to Bonding in Complexes; Crystal Field Theory: Octahedral Crystal Fields; Tetrahedral Crystal Fields; Square-Planar Complexes; High-Spin Versus Low-Spin Octahedral Complexes; High-Spin Versus Low-Spin tetrahedral Complexes

Section -B

<u>Analytical Chemistry</u>: Titrations: Terminology- equivalence point and end point, primary and secondary standards, reactions used for titrations, molarity and normality, some examples of stoichiometric calculations.

Acid-base titration, Acid-base indicators, theory of acid base indicators, calculation of pH values at different stages of the acid base titration and titration curve.

Precipitation and Complexometric Titration: indicator theory, effect of complexing agents and their advantages, examples including EDTA based titration and titration curve,

Back and blank titration with examples, Gravimetric Method of Analysis with examples Electrochemistry in Analysis: Redox titrations, Redox indicators, their use in volumetric analysis, iodometry and iodimetry, example of titration from other redox systems.

Section - C

IONIC EQUILIBRIA: Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect; dissociation constants of mono-, di-and triprotic acids.

Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions; derivation of Henderson equation and its applications; buffer capacity, buffer range, buffer action and applications of buffers in analytical chemistry and biochemical processes in the human body. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle. Theory of acid–base indicators; selection of indicators and their limitations. Hydrolysis and hydrolysis constants.

Section - D

SURFACE AND COLLOIDS CHEMISTRY: Physical adsorption, chemisorption, nature of adsorbed state. Adsorption- Langmuir and Freundlich isotherms. Multilayer adsorption-BET equation (no derivation) and its application to surface area measurement. Sols (reversible and irreversible), emulsions and emulsifiers, association colloids (micelles), gels. Applications of colloids

<u>Catalysis:</u> Types of catalysts, specificity and selectivity, mechanisms of catalyzed reactions at solid surfaces. Enzyme catalysis, Michaelis-Menten mechanism, acid-base catalysis and mechanism.

Text and Reference Books

- 1. Atkins, P. W. & Paula, J. de *Atkin's Physical Chemistry* 10th Ed., Oxford University 12 Press (2014).
- 2. Qualitative Analysis Day and Underwood, 5th edition, Prentice-Hall (1986).
- 3. Fundamentals of Analytical Chemistry Douglas A. Skoog, Donald M. West, F. James Holler and Stanley R. Crouch, 9th Edition, Cengage Learning (2013).
- 4. F. A. Cotton, G. Wilkinson, P. G. Gauss, Basic Inorganic Chemistry, 3rd Edition, John Wiley, 1995
- 5. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 6. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

B.Sc.(Hons.) Physics, Manay Rachna University

Course Code	Course	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	1	-	3	3	-	-	-	-	-	-	-	-	_	1
	Essential	CO2		-	3	3	-	ı	-	-	-	-	2	1		1
CHH10	s of	CO3	2	-	3	3	-	-	-	-	-	-	-	_	-	1
5B-T	Chemist	CO4		-	3	3	-	-	-	-	-	-	2	1		2
	ry	CO5	1	-	3	3	-	1	-	-	-	-	-	_	_	2
		CO6	1	-	3	3	-	-	-	-	-	-	-	1	_	2

Course Tit	le/Code	E	ssentials of Chemistry (CHH105B-P)
Course 7	Гуре		Core
L-T-P Str	ucture		0-0-2
Credi	its		1
Course Ob	jective		knowledge of mathematics, physics and other a wide variety of chemical problems.
Course	Outcomes (C	Os)	Mapping
CO1	Understand types of titra their applica	ation and	Skill Development
CO2	Analyze the concentratio solutions.	n of	Skill Development
CO3	Evaluate the hydrolysis of	-	Skill Development
Prerequisites			

LIST OF EXPERIMENTS

- 1. To determine strength of unknown HCl by titrating it against N/10 NaOH
- 2. To estimate the amount of Zinc present in a given solution by EDTA method.
- 3. To estimate the amount of Magnesium present in a given solution by EDTA method.
- 4. To estimate the amount of copper present in given solution by EDTA method.
- 5. To determine amount of Cu(II) in an unknown sample by iodometric titration.
- 6. To determine strength of given solution of ferrous ammonium sulphate (mohr salt) being provided with $N/30 \text{ KMnO}_4$.
- 7. To estimate amount of Barium gravimetrically.
- 8. To find the Strength of an acid (Strong Acid -HCl OR weak acid- CH₃ COOH conductometrically.
- 9. To determine the adsorption of aqueous acetic acid by activated charcoal and study adsorption isotherm
- 10. To determine the solubility of a salt (KCl or NaCl) in water at room temperature
- 11. To determine the solubility of organic acid (oxalic acid) in water at room temperature
- 12. To determine the solubility product of calcium hydroxide using common ion effect of sodium hydroxide or any other strong alkali.

Course Code	Course	Course Outco mes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
CHH10	Essential	CO1	1	-	-	-	-	-	-	-	3	ı	2	3	ı	_

5B-P	s of	CO2	2	-	-	-	-	-	-	-	3	-	2	3	-	-
	Chemist ry	CO3	2	-	-	-	-	-	-	-	3	-	2	3	-	-

Course Title/Code	Programming for Problem Solving	Using C (CSH105B-T)									
Course Type	Core (Allied)										
L-T-P Structure	3-1-0										
Credits	4										
Course Objective	Course Objective To construct a program of moderate complexity from a specification										
	Course Outcomes (COs)	Mapping									
CO1	Analyze and apply Test Driven Development approach to design programs.	Skill Development and Employability									
CO2	Understand and apply programming language constructs as per given problems	Skill Development and Employability									
CO3	Understand and apply C programming language constructs on open source platform	Skill Development and Employability									
CO4	learn to work in a team using different online platform for program development	Skill Development and Employability									
Prerequisites (if any)											

Section-A

Programming and UNIX

Students will learn the basics of programming using Scratch, they will learn to use statements, expressions, conditions, selection, iteration, variables, functions, arrays, threads and events. In addition, they will be introduced to basic UNIX commands under Bash.

Introduction to Programming, test driven development, Scratch: Introduction, statements, expressions, conditions, selection, iteration, variables, functions, arrays.UNIX: Basic commandspwd, ls, cd, rm, cat, less, mkdir, rmdir; permissions, root. C language: statements, expressions, conditions, selection iteration, variables, functions, arrays.

Section-B

Applying programming constructs

Students will learn how to write programs that satisfy unit tests. The instructor will build the unit tests, demonstrating how to break a problem down into smaller components. In the labs and homework, students will construct programs that satisfy the unit tests. Students become familiar with the constructs of the C programming language.

Moving to C: Data Types, constants, and variables, Statements, Expressions, Conditions, Selection, iteration, Functions and recursion

Decision making within a program, Conditions, Relational Operators, Logical Connectives, if statement, if-else statement, Loops: while loop, do while, for loop, Nested loops, Infinite loops, Switch statement, structured Programming

Arrays; One dimensional arrays: Array manipulation; Searching, Insertion, Deletion of an element from an array; Finding the largest/smallest element in an array; Null terminated strings as array of characters, Standard library string functions

Introduction to Top-down approach of problem solving, Modular programming and functions, Standard Library of C functions, Prototype of a function: Formal parameter list, Return Type, Function call, Block structure, Passing arguments to a Function: call by reference, call by value, Recursive Functions, arrays as function arguments.

Section-C

Practical programming:

During the third quarter of the class, students will begin building their own programs by decomposing problems into smaller tasks and writing unit tests that will check to see that the program accurately accomplishes the task using Test Driven Development. They will then write the program that satisfies their own unit tests. Students will learn to apply the constructs of the C programming language to create programs.

Students will learn to apply these programming techniques: Structure variables, initialization, structure assignment, nested structure, structures and functions, structures and arrays: arrays of structures, structures containing arrays, unions, Break, Continue and Goto, Type Conversion; Enumerations; Macros. Students will be able to use these techniques to develop programs

Section-D

Memory Management and Abstraction

During the final quarter, students will be introduced to dynamic memory allocation and dynamic data structures including: dynamic arrays. They will consolidate their ability to use the C programming techniques they have learned in the earlier sections.

Address operators, pointer type declaration, pointer assignment, pointer initialization, pointer arithmetic, functions and pointers, Arrays and Pointers, pointer arrays, pointers and structures, dynamic memory allocation, software configuration management, Modules, C Unit, GIT, SCRUM, MAKE. Dynamic Memory Allocation.

Text and Reference Books

- 1. The C Programming Language, Brian Kernighan and Dennis Ritchie
- 2. The Unix Programming Environment
- 3. Pro Git

Course Code	Course	Course Outcom e	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1
CSH105B -T	Programmin g for	CO1	3	3	2	-	-	-	-	-	3	3	3
	Problem solving using	CO2	3	3	3	-	-	-	-	-	2	2	2
	С	CO3	3	3	3	-	-	-	-	-	3	3	2
		CO4	3	3	3	-	-	-	-	-	2	2	3

Course Title/Code	Programming for Problem Solving Using C Lab (C	CSH105B-P)							
Course Type	Core (Allied)								
L-T-P Structure	0-0-2								
Credits	1								
Course Objective To construct a program of moderate complexity from a specification									
	Course Outcomes (COs)	Mapping							
CO1	Analyze and apply Test Driven Development approach to design programs.								
CO2	Understand and apply programming language constructs as per given problems	Skill Development and Employability							
CO3	Understand and apply C programming language constructs on open source platform	Skill Development and Employability							
CO4	learn to work in a team using different online platform for program development	Skill Development and Employability							
Prerequisites (if any)									

LIST OF EXPERIMENTS

- 1. Scratch: Covering Concepts of
 - I. Sequential Statements
 - II. Variables
 - III. Blocks
- 2. Unix Commands: pwd, mkdir, cd, ls, less, touch, cp,move, cat, rm, rmdir –r etc.
- 3. Moving to C Using nano and gcc.

4. Project on Calculator Using Agile Methodology, Nano, Cunit, Git, Scrum, Agile Methodology,

Nano, Gcc, Make. Covering Conepts:

- Statements
- Functions
- Arrays
- Structures
- Pointers
- File Handling

Suggested Books:

- 1. The C Programming Language, Brian Kernighan and Dennis Ritchie
- 2. The Unix Programming Environment
- 3. Pro Git

Help Pages

1. Eclipse C/C++ Development Guide

Wikipedia Pages

- 1. Test-driven development, http://en.wikipedia.org/wiki/Test-driven_development
- 2. Unit testing, http://en.wikipedia.org/wiki/Unit_testing

Tool Web Sites

- 1. Eclipse, https://eclipse.org/users/
- 2. Git, http://git-scm.com/
- 3. GCC, https://gcc.gnu.org/onlinedocs/gcc-4.9.3/gcc/
- 4. Make
- 5. Unix

Web tutorials

1. Harvard's CS50, https://courses.edx.org/courses/HarvardX/CS50x3/2015/info

Course Code	Course	Course Outcom e	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1
CSH105B -P	Programmin g for	CO1	3	3	2	-	-	-	-	-	3	3	3
	Problem solving using C Lab	CO2	3	3	3	-	-	-	-	-	2	2	2
		CO3	3	3	3	-	-	-	•	•	3	3	2

CO4	3	3	3	-	-	-	-	-	2	2	3
											ľ

Course Title/Code	Communicative English (HLS102)										
Course Type	Core (A	Allied)									
L-T-P Structure	(1-0)-2)									
Credits	2										
Course Objective To imbibe students about the basics of communication skills & E Language by understanding the need of industry.											
(Course Outcomes (COs)	Mapping									
CO1	To know about all the words and phrases of English language.	Skill Development									
CO2	To build the basic skills of effective communication	Skill Development									
CO3	To know about the importance of Listening	Skill Development									
CO4	To know about the importance of verbal and nonverbal movements. Skill Development										
Prerequisites (if any)											

Section - A

Lexis:

Homonyms, Homophones, Homographs, Words often confused, One word Substitutes, Synonyms and Antonyms, Foreign Words, Phrasal Verbs & Idioms and Phrases

Section - B

Oral Communication:

Importance of Speech Sounds, Organs of Speech, Vowel Sounds, Consonant Sounds, IPA Symbols, Phonetic Transcription, Phoneme and Syllables, Intonation, Word Stress, Sentence Stress.

Section – C

Presentation Skills:

Body Language and Paralanguage, Gestures and Postures, Kinesics, Proxemics, Importance of Body Language in Presentation, Etiquette of the Telephone Handling and Business Meetings, Professional Presentation, Hearing and Listening, Essentials of Effective Listening, Importance of Effective Listening, Visual Presentation – How to prepare slide presentation.

Section - D

Technical Writing-II:

Business Letters, Job Application and Resume Writing, Developing Outlines, Circular, Memos, Blog Writing and Comments on Media.

Suggested Text Reading:

- 1. A Practical Course for Developing Writing Skills in English. J K Gangal: PHI Learning Pvt.
- 2. A Textbook of English Phonetics for Indian Students. T.BalaSubhrmaniam: Macmillan
- 3. English Vocabulary in Use. MaCarthy: Foundation Books, OUP. Print.
- 4. English Grammar, Competition and Correspondence. M.A. Pink and A.C. Thomas: S. Chand and Co. Print.
- 5. Reading Between the Line: Students Book. MacRae: Foundation Books. CUP, New Delhi.

List of Practical:

- 1. Extempore
- 2. Homonyms & Homophones
- 3. Foreign Words
- 4. Idioms & Phrases and Phrasal Words
- 5. Telephonic Conversation
- 6. Business Letter
- 7. Group Discussion
- 8. Organs of Speech
- 9. Phonetic Transcription
- 10. Job Application & CV Writing
- 11. Presentation
- 12. Circular & Memo
- 13. Mock Interview
- 14. Blog Writing

Course Code	Course	Course Outcome s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1
		CO1	-	-	-	1	-	-	-	3	-	-	1
	Communicativ	CO2	•	-	-	1	-	-	-	3	-	-	1
2	e English	CO3	-	-	-	1	-	-	-	3	-	-	1
		CO4	-	-	-	1	-	-	-	3	-	-	1

SEMESTER II

COURSE	COURSE	OFFERING	COURSE	L	Т	P	NO. OF
CODES	NAME	DEPARTMENT	TYPE				CREDITS
			(Core/Elective				
			University				
			Compulsory)				
PHH107B-T	Electricity and	PH	CORE	3	1	Λ	4
	Magnetism			3	1	0	4
PHH107B-P	Electricity and	PH	CORE				
	Magnetism			0	0	2	1
	Lab						
PHH108B-T	Wave Optics	PH	CORE	3	1	0	4
PHH108B-P	Wave Optics	PH	CORE	0	0	2	1
	Lab			U	U	4	1
PHH109B-T	Mathematical	PH	CORE	3	1	Λ	4
	Physics II			3	1	0	4
PHH109B-P	Mathematical	PH	CORE	0	^	2	1
	Physics II Lab			U	0	4	1
СНН137	Environmental	СН	UCC	2	^	2	4
	Science			<i>_</i>	0	2	4
	TOTAL (L-T-			11	3	8	10
	P-/CREDITS)						19

Detailed Syllabus

Course Title/Code	Electricity and Magnetism (PHH10	7B-T)
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To solve the problems on Electrostatic Energy and dietc.; to distinguish and design the Ferro, ferry, an magnetic material and their applications in real file.	
	Course Outcomes (COs)	Mapping
CO1	Acquire the knowledge of vector calculus to be applied to electromagnetism	Skill Development
CO2	Apply vector calculus for the computation of various parameters of electrostatics	Skill Development
CO3	Analyze the variation of magnetic fields due to current flowing in different forms and due to dipole	Skill Development
CO4	Appreciate various characteristics and properties of magnetic field in electromagnetic applications.	Skill Development
Prerequisites (if any)		

Section-A

Electric Field and Electric Potential

Electric Field: Electric Field Lines, Electric Flux. Gauss' Law with Applications to Charge Distributions with Spherical, Cylindrical and Planar Symmetries, Conservative Nature of Electrostatic Field, Electrostatic Potential, Laplace's and Poisson Equation, The Uniqueness Theoremand Potential Electric Field of a Dipole, Force and Torque on a Dipole.

Section-B

Electrostatic Energy

Electrostatic Energy of System of Charges, Electrostatic Energy of a Charged Sphere, Conductors in an Electrostatic Field, Surface Charge and Force on a Conductor, Capacitance of a System of Charged Conductors, Parallel-Plate Capacitor, Capacitance of an Isolated Conductor, Method of Images and its Application

Dielectric Properties of Matter

B.Sc.(Hons.) Physics, Manav Rachna University

Electric Field in Matter, Polarization, Electrical Susceptibility and Dielectric Constant, Capacitor (Parallel Plate, Spherical, Cylindrical) Filled with Dielectric, Displacement Vector **D**, Relations between **E**, **P** and **D**, Gauss' Law in Dielectrics

Section-C

Magnetic Field

Magnetic Force between Current Elements and Definition of Magnetic Field **B**; Biot-Savart's Law and its Simple Applications: Straight Wire and Circular Loop, Current, Loop as a Magnetic Dipole and its Dipole Moment, Ampere's Circuital Law and its Application to (1) Solenoid and (2) Toroid; Properties of **B**: Curl and Divergence, Vector Potential, Magnetic Force on (1) Point Charge (2) Current Carrying Wire (3) Between Current Elements, Torque on a Current Loop in a Uniform Magnetic Field.

Section-D

Magnetic Properties of Matter

Magnetization Vector (M), Magnetic Intensity (H), Magnetic Susceptibility and Permeability, Relation between B, H, M, Ferromagnetism, B-H Curve and Hysteresis.

Electromagnetic Induction

Faraday's Law, Lenz's Law, Self-Inductance and Mutual Inductance, Reciprocity Theorem, Energy Stored in a Magnetic Field, Charge Conservation and Displacement Current. Introduction to Maxwell's Equations

Text and Reference Books

- Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw (Text Book)
- 2. Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education (Text Book)
- 3. Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.
- 4. Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- 5. Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.
- 6. Electricity and Magnetism, J.H.Fewkes&J.Yarwood. Vol. I, 1991, Oxford Univ. Press.

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH10 7B-T	Electrici ty and Magneti sm	CO1	3	3	2	1	2	2	-	-	2	2	2	2	2	2
		CO2	3	3	2	1	2	2	-	-	2	2	2	2	2	2
		CO3	2	3	2	1	2	2	-	-	2	3	3	3	2	2
		CO4	2	3	2	1	2	2	-	-	2	3	3	3	2	2

Course Title/Code	Electricity and Magnetism Lab (PHH107B-P)											
Course Type	Core (Deptt.)											
L-T-P Structure	0-0-2											
Credits	1											
Course Objective	To solve the problems on Electrostatic Energy and di etc.; to distinguish and design the Ferro, ferry, an magnetic material and their applications in real life.	·										
	Course Outcomes (COs)	Mapping										
CO1	Demonstrate the characteristics of various electric circuits.	Skill Development and Employability										
CO2	Demonstrate and analyze the variation of magnetic fields due to current flowing in different forms.	Skill Development and Employability										
Prerequisites (if any)												

List of Experiments

1. Use of a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC

Current, (d) Capacitances, and (e) Checking electrical fuses.

- 2. To study the characteristics of a series RC Circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dl)
- 8. To verify the Superposition, and Maximum power transfer theorems.
- 9. To determine self-inductance of a coil by Anderson's bridge.
- 10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency,
- (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- 11. To study the response curve of a parallel LCR circuit

B.Sc.(Hons.) Physics, Manay Rachna University

- 12. To determine self-inductance of a coil by Rayleigh's method.
- 13. To determine the mutual inductance of two coils by Absolute method.

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
DIIII	Electrici	CO1	3	3	2	1	2	2	•	-	2	2	2	2	2	2
PHH10 7B-P	ty and Magneti sm Lab	CO2	3	3	2	1	2	2	-	-	2	2	2	2	2	2

Course Title/Code	Wave Optics (PHH108B-T)	
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To introduce to the concepts of physics and different using devices based on these phenomena.	optical phenomena by
	Course Outcomes (COs)	Mapping
CO1	Ability to produce and analyze the interference pattern due to division of amplitude & wave front.	Skill Development
CO2	Ability to produce required quality Spectrum and analyze it using appropriate diffraction grating	Skill Development
CO3	Ability to measure the concentration/purity of optically active materials using optical devices.	Skill Development
CO4	Ability to explain the construction, working and applications of Lasers and Optical Fibers.	Skill Development
Prerequisites (if any)		

Section- A

INTERFERENCE

Interference of light, Young's Double Slit Experiment, analytical treatment of interference, Conditions for Sustained Interference, Coherent Sources and coherence, Interference based on the Division of Wave Front, Interference based upon Division of Amplitude, Fresnel Bi-Prism and its Applications, Interference in Thin Films, Newton's Ring and its Applications, Michelson Interferometer and its Applications.

Section - B

DIFFRACTION

Difference between interference and diffraction; Fraunhoffer and Fresnel diffraction; Fraunhoffer diffraction through a single slit; plane transmission diffraction grating (N-slits); absent spectra; Resolving power-Rayleigh's criterion of resolution; Dispersive power; Resolving power of a grating.

Section - C

POLARISATION

Polarized and Un-Polarized Light; Brewster's law, Malus Law; Uniaxial crystals, Double Refraction; Nicol Prism; Quarter and Half Wave Plates; Detection and Production of Different Types of Polarized Light; Polarimetry; Bi-Quartz and Laurent's Half Shade Polarimeter

Section - D

Laser: Stimulated absorption, Spontaneous and stimulated emission, Population inversion, Conditions for laser action, Types of laser: He-Ne laser, Ruby Laser, Semiconductor laser, Laser properties and applications;

Fiber Optics: Introduction; Propagation of light through a fiber; Numerical aperture; Types of fiber; Modes of propagation (simple idea); V-number, applications of optical fibers;

References/ Text and Reference Books

- 1. Textbook of Optics, Brijlal and Subramaniam
- 2. Optics- A K Ghatak
- 3. Fundamentals of Optics- Jenkins and White
- 4. Optics- Eugene Hecht
- 5. Fundamentals of Optics- Khanna and Gulati
- 6. Engineering Physics- SatyaParkash
- 7. Modern Physics- S P Taneja

Course Code	Cour se	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
РНН108 В-Т	Wave Optic s	CO1	3	3	-	-	-	1	-	2	-	1	-	1	-	-
			3	3	2	-	-	2	-	3	-	2	-	-	-	-
		соз	1	3	2		1	2		2	2	2	-	1	1	1
		CO4	-	-	3	2	2	2	-	3	-	3	-	1	1	1

Course Title/Code	Wave Optics Lab (PHH108B-F	P)
Course Type	Core (Deptt.)	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To introduce to the concepts of physics and different using devices based on these phenomena.	optical phenomena by
	Course Outcomes (COs)	Mapping
CO1	Ability to produce and analyze the interference pattern due to division of amplitude & wave front.	Skill Development
CO2	Ability to produce required quality Spectrum and analyze it using appropriate diffraction grating	Skill Development
CO3	Ability to measure the concentration/purity of optically active materials using optical devices.	Skill Development
CO4	Ability to explain the construction, working and applications of Lasers and Optical Fibers.	Skill Development
Prerequisites (if any)		

List of Experiments

- 1. To determine the wavelength of sodium light by Newton's rings experiment.
- 2. To determine the wavelength of sodium light by Fresnel's biprism experiment.
- 3. To determine the wavelength of various colors of white light with the help of a plane transmission diffraction grating.
- 4. Determination of dispersive power of the given grating.
- 5. To determine the refractive index and Cauchy's constants of a prism by using spectrometer.
- 6. To determine the wavelength of sodium light by Michelson interferometer.
- 7. To determine the resolving power of a telescope.
- 8. To determine the pitch of a screw using He-Ne laser
- 9. To determine the specific rotation of optically active solution by using Laurent's half shade polarimeter.
- 10. To determine the numerical aperture of an optical fiber using laser light.

Text and Reference Books

- 1. Advanced Practical Physics- B. L. Worsnop and Flint.
- 2. Practical Physics- S. L. Gupta and V. Kumar
- 3. B. Sc. Practical Physics- Harnam Singh and P. S. Hemine
- 4. Advanced Practical Physics- Chauhan and Singh

Course Code	Cour se	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
	Wave Optic s Lab	CO1	3	3	-	-	-	1	-	2	-	1	-	1	-	-
PHH108 R-P			3	3	2	-	-	2	-	3	-	2	-	-	-	-
		соз	1	3	2		1	2		2	2	2	-	1	1	1
		CO4	-	-	3	2	2	2	-	3	-	3	-	1	1	1

Course Title/Code	Mathematical Physics - II (PHH109	9B-T)
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To study special functions (Beta ,Gamma function), F Fourier series and Laplace Transforms, partial differe and tensors	,
	Course Outcomes (COs)	Mapping
CO1	Ability to apply Beta, Gamma function and Frobenius method to solve different problems	Skill Development and Employability
CO2	Ability to apply Fourier series and Laplace Transforms.	Skill Development and Employability
CO3	Ability to apply partial differential equations for different problems	Skill Development and Employability
CO4	Ability to apply tensors in fluid flow and relativity	Skill Development and Employability
Prerequisites (if any)		

Section- A

Special Functions and second order differential equations

Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions, Series solution of second order differential equations, Frobenius method and its applications.

Section - B

Fourier Series and Laplace transform

Periodic functions, Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only), Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients, Even and odd functions and their Fourier expansions, Laplace Transform (LT) of Elementary Functions, Properties of Laplace Transforms: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Inverse LT, Application of Laplace Transforms.

Section- C

Partial Differential Equations

Method of forming partial differential equations, solution of equations by direct integration, solutions of Partial Differential Equations Using Separation of Variables, Laplace's Equation, Wave Equationa and its Solution for Vibrating Membranes.

Section-D

Tensors

Transformation Properties of Vectors, Covariant and Contra Variant Vectors; Tensors: Definition, Algebraic Properties; Numerical Tensors (Kronecker Delta and Levi-Civita Symbols), Metric Tensor, Index Raising, Lowering, Contraction; Electromagnetic Field Tensor; Covariant Differential, Covariant Derivative, Metric Connection; Riemann Curvature Tensor, Bianchi Identity, Ricci Tensor, Einstein Equation and Curvature Tensor.

Text and Reference Books

- 1. A Text Book of Differential Equations By N. M. Kapoor (Pitambar Publishing, 2006)
- 2. Schaum's outline of theory and problems of differential equations By Richard Bronson (McGraw-Hill Professional, 1994)
- 3. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Limited, 1985)
- 4. Higher Engineering Mathematics by B S Grewal, Khanna Publishers (2000)
- 5. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7th Edn., Elsevier.

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	3	3	3	-	1	3	3	-	-	3	-	-	•	-
DIIII	Mathemat	CO2	3	3	3	-	-	3	3	-	-	3	-	-	-	1
PHH10 9B-T	ical Physics II	CO3	3	3	3	-	-	3	3	-	-	3	-	-	-	-
		CO4	3	3	3	-	ı	3	3	-	-	3	-	-	-	-

Course Title/Code	Mathematical Physics - IILab (PHH1	Mathematical Physics - IILab (PHH109B-P)										
Course Type	Core (Deptt.)											
L-T-P Structure	0-0-2											
Credits	1											
Course Objective	To apply software packages for solving special functi function), Fourier series and Laplace Transforms, par equations and tensors											
	Course Outcomes (COs)	Mapping										
СО	Ability to solve Beta, Gamma function and different special differential equations using software packages.	Skill Development and Employability										
Prerequisites (if any)												

List of Experiments

- 1- To solve Legendre equation.
- 2- To solve Bessel equation.
- 3- Problems on Beta and Gamma functions.
- 4- Applications of Frobenius method
- 5-Problems on Fourier series.
- 6- To solve partial differential equations (atleast 4 problems).

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH10 9B-P	Mathemat ical Physics II Lab	СО	3	3	3	1	1	3	3	1	1	3	ı	ı	ı	ı

Course Title/Code	Environmental Science (CHH13	37)
Course Type	Core	
L-T-P Structure	2-0-4	
Credits	0/4	
Course Objective	The students will be able to identify the area degradation and suggest possible solutions.	as of environmental
	Course Outcomes (COs)	Mapping
CO1	Understand and explain the multidisciplinary dimensions of environmental issues	Skill Development
CO2	Understand the primary environmental problems and suggest potential solutions	Entrepreneurship
CO3	Discuss about the various types of organisms and draw inferences about their interactions in different environmental settings/habitats	Skill Development
CO4	Defend/criticize the consequences of the interactions between social and environmental factors	Skill Development
Prerequisite		

Section - A

Multidisciplinary nature of environmental studies

Definition, scope and importance, Need for public awareness

Renewable and non-renewable resources:

Natural resources and associated problems

- . Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.
- a. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- b. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- c. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- d. Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.

- e. Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification.
- f. Role of an individual in conservation of natural resources.
- g. Equitable use of resources for sustainable lifestyles.

Section - B

Ecosystems

- Concept of an ecosystem
- Structure and function of an ecosystem
- Producers, consumers and decomposers
- Energy flow in the ecosystem
- Ecological succession
- Food chains, food webs and ecological pyramids
- Introduction, types, characteristic features, structure and function of the following ecosystem:

Forest ecosystem

Grassland ecosystem

Desert ecosystem

Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its conservation

- Introduction Definition: genetic, species and ecosystem diversity.
- Biogeographical classification of India
- Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values
- Biodiversity at global, National and local levels
- India as a mega-diversity nation
- Hot-sports of biodiversity
- Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts.
- Endangered and endemic species of India
- Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Section - C

Environmental Pollution

- Definition, Cause, effects and control measures of:
 - a. Air pollution
 - b. Water pollution
 - c. Soil pollution
 - d. Marine pollution
 - e. Noise pollution
 - f. Thermal pollution
 - g. Nuclear hazards
- Solid waste Management: Causes, effects and control measures of urban and industrial wastes.
- Role of an individual in prevention of pollution.
- Pollution case studies.
- Disaster management: floods, earthquake, cyclone and landslides.

Social Issues and the Environment

- From Unsustainable to Sustainable development
- Urban problems related to energy
- Water conservation, rain water harvesting, watershed management
- Resettlement and rehabilitation of people; its problems and concerns, Case Studies
- Environmental ethics: Issues and possible solutions.
- Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies
- Wasteland reclamation
- Consumerism and waste products
- Environment Protection Act
- Air (Prevention and Control of Pollution) Act
- Water (Prevention and control of Pollution) Act
- Wildlife Protection Act
- Forest Conservation Act
- Issues involved in enforcement of environmental legislation
- Public awareness

Section - D

Human Population and the Environment

- Population growth, variation among nations.
- Population explosion Family Welfare Programme
- Environment and human health
- Human Rights
- Value Education
- HIV/AIDS
- Women and Child Welfare
- Role of Information Technology in Environment and human health.
- Case Studies.

ENVIRONMENTAL SCIENCES-FIELD WORK

- Visit to a local area to document environmental assets- river/forest/grassland/hill/mountain
- Visit to a local polluted site-Urban/Rural/Industrial/Agricultural
- Study of common plants, insects, birds.
- Study of simple ecosystems-pond, river, hill slopes, etc. (Field work Equal to 5 lecture hours)

Reference Books:

- 1. K.C. Agarwal, Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 2. BharuchaErach, The Biodiversity of India, Mapin Publishing Pvt. Ltd.
- 3. R.C. Brunner, Hazardous Waste Incineration, McGraw Hill Inc.1989.
- 4. R. S. Clark, Marine Pollution, Clanderson Press Oxford (TB)
- 5. W. P. Cunningham, T. H. Cooper, E. Gorhani, M. T. Hepworth, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 2001.
- 6. A. K. De, Environmental Chemistry, Wiley Eastern Ltd.
- 7. C. Baird and M. Cann, Environmental Chemistry, W.H. Freeman and Company, New York, 2012.
- 8. C.J-Gonzalez and D.J.C. Constable, Green Chemistry and engineering: A practical Design Approach A John Wiley & Sons, INC., publication, New Jersey, 2011
- 9. S. E. Manahan, Environmental Chemistry, CRC Press, 2005

- 10. Perspectives in Environmental Studies Kaushik&Kaushik New age international publishers Ltd.-New Delhi
- 11. John Grant, The Green marketing Manifesto, Wiley Publications

Cours e Code	Course	Course Outco mes	P	P O2	P O3	P O4	P O5	P O6	P O7	P O8	P O9		PO 11	PO 12	PO 13	PO 14
СНН	Environm ental	CO1	-	-	-	-	-	-	2	3	1	3	-	-	-	-
137	Science	CO3	-	-	-	-	•	ı	2	3	1	3	-	-	-	-
		CO4	-	-	-	-	•	-	2	3	1	3	•	•	-	-

Semester-III

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	L	Т	P	NO. OF CREDITS
РНН201В-Т	Quantum Mechanics	РН	3	1	0	4
РНН201В-Р	Quantum Mechanics Lab	РН	0	0	2	1
РНН202В-Т	Mathematical Physics III	РН	3	1	0	4
PHH202B-P	Mathematical Physics III LAB	РН	0	0	2	1
РНН203В-Т	Electromagnetic theory	РН	3	1	0	4
РНН203В-Р	Electromagnetic theory Lab	РН	0	0	2	1
FLS101	Spanish I	CDC	1	1	0	2
FLS102	German I					
FLS103	French I					
	Open elective Odd Semester Basket/mini project-1	offered by different departments	1	0	2	2
	TOTAL (L-T- P/CREDITS)		11	4	8	19

	ELECTIVE BASKET														
SUBJE CT CODES	SUBJE CT NAME	**OFFERI NG DEPARTM ENT	*COUR SE NATUR E (Hard/S oft/ Worksh op/ NTCC)	COURSE TYPE (Core/Elec tive/ University Compulsor y)	L	Т	P	O	NO. OF CONTA CT HOURS PER WEEK	NO. OF CREDI TS					
EDS288	Applied Philoso phy	Education	Soft	ELECTIV E	1	0	2	0	3	2					
EDS289	Applied Psychol ogy	Education	Soft	ELECTIV E	1	0	2	0	3	2					
EDS290	Applied Sociolo gy	Education	Soft	ELECTIV E	1	0	2	0	3	2					
MCS231	Basics of Econom ics	Management	Soft	ELECTIV E	1	0	2	0	3	2					
MCS232	Introduc tion of Finance	Management	NTCC	ELECTIV E	0	0	2	0	2	2					
CDO203	Quantit ative Aptitud e-I	CDC	Soft	ELECTIV E						2					
PHN204	Mini Project- I	Physics													

Semester-III

Detailed Syllabus

Course Title/Code	Quantum Mechanics (PHH201B	–T)
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To discuss Quantum phenomena in microscopic object Mechanics in one and three dimensional cases.	cts and Quantum
	Course Outcomes (COs)	Mapping
CO1	Ability to acquire and demonstrate knowledge of quantum phenomena like Photoelectric Effect, Compton Effect and concept of wave packet.	Skill Development
CO2	Ability to discuss time dependent and independent form of Schrodinger wave equation and apply them for one dimensional potential.	Skill Development
CO3	Ability to apply Schrodinger equation to spherically symmetric potential of one electron atom	Skill Development
CO4	Ability to discuss tunnel effect to explain fundamental phenomena like alpha decay and working of electronic devices based on the phenomenon	Skill Development
Prerequisites (if any)		

Section-A

Particles and Waves

Inadequacies in Classical Physics, Blackbody Radiation: Quantum Theory of Light, Photoelectric Effect, Compton Effect; Wave Nature of Matter: de Broglie Hypothesis, Wave-Particle Duality, Davisson-Germer Experiment, Wave description of Particles by Wave Packets, Group and Phase Velocities and Relation between them, Heisenberg's Uncertainty Principle: Derivation from Wave Packets

Section-B

Quantum Mechanics

Basic Postulates and Formalism: Energy, Momentum and Hamiltonian Operators, Time dependent and Time-independent Schrödinger Wave Equation, Properties of Wave Function. Interpretation of Wave Function, Probability Density and Probability, Normalization, Linearity and Superposition Principles, Eigenvalues and Eigenfunctions, Expectation Values, Wave Function of a Free Particle, Particle in a one Dimensional Box

Section-C

Bound State Problems

General Features of a Bound Particle System, One Dimensional Simple Harmonic Oscillator: Energy Levels and Wave Functions, Zero Point Energy; Quantum Theory of Hydrogen Atom: Particle in a Spherically Symmetric Potential, Separation of Variables, Radial Solutions and Principal Quantum Number, Orbital and Magnetic Quantum Numbers, Quantization of Energy and Angular Momentum, Space Quantization, Electron Probability Density.

Section-D

Finite Potential

Radiative Transitions, Selection Rules, Scattering Problems in one Dimension: Finite Potential Step: Reflection and Transmission, Stationary Solutions, Probability Current, Attractive and Repulsive Potential Barriers, Quantum Phenomenon of Tunneling: Tunnel Effect, Finite Potential Well.

Text and Reference Books

- 1 L. I. Schiff, Quantum Mechanics, 3rd edition, (McGraw Hill Book Co., New York 1968).
- 2 A. Beiser, Concepts of Modern Physics (Text Book)
- 3 E. Merzbacher, Quantum Mechanics, 3rd edition, (John Wiley & Sons, Inc1997)
- 4 J.L. Powell & B. Crasemann, Quantum Mechanics, (Addison-Wesley Pubs.Co.,1965)
- 5 A. Ghatak& S. Lokanathan, Quantum Mechanics: Theory and Applications, 5th Edition, (Macmillan India , 2004)
- 6 E. M. Lifshitz and L. D. Landau, Quantum Mechanics: Non-Relativistic Theory (Course of Theoretical Physics, Vol 3), 3rd Edition, Butterworth-Heinemann (1981).
- 7 Quantum Mechanics: Foundations and Applications by Arno Bohm.-3rd ed.(New York: Springer-Verlag, 2003).

B.Sc.(H) Physics ManavRachna University

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
	Quantu	CO1	3	3	-	-	•	2	•	1	-	2	•	2	-	2
PHH20	m	CO2	2	2	2	-	3	3	•	2	-	3	-	-	-	1
1B-T	Mechan	CO3	2	2	3	-	2	3	•	3	3	3	-	2	1	2
	ics	CO4	-	-	-	3	3	3	-	2	-	3	•	2	2	2

Course Title/Code	Quantum Mechanics Lab (PHH201	B –P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To demonstrate Quantum phenomena in microscopic Mechanics in one and three dimensional cases.	objects and Quantum
	Course Outcomes (COs)	Mapping
CO1	Ability to acquire and demonstrate knowledge of quantum phenomena like Photoelectric Effect, Compton Effect and concept of wave packet.	Skill Development
CO2	Ability to solve Schrodinger wave equation for different physical systems using software packages.	Skill Development
Prerequisites (if any)		

List of Experiments

- 1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom.
- 2. Solve the s-wave radial Schrodinger equation for an atom for screened coulomb potential.
- 3. Solve the s-wave radial Schrodinger equation for an anharmonic oscillator.
- 4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule

Laboratory based experiments:

- 5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
- 6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
- 7. To show the tunneling effect in tunnel diode using I-V characteristics.
- 8. To measure quantum efficiency of CCDs
- 9..Frank Hertz experiment

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
	Quantu	CO1	3	3	-	-	-	2	-	1	-	2	-	2	1	2
PHH20 1B-P	m Mechan ics Lab	CO2	2	2	2	-	3	3	-	2	-	3	-	-	2	1

Course Title/Code	Mathematical Physics - III (PHH20)2B-T)
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To study complex analysis, Fourier transform, proba Non Linear Method and Chaos applicable to different	
	Course Outcomes (COs)	Mapping
CO1	Ability to apply the concept of complex analysis and evaluate the different problem problems based on complex analysis.	Skill Development
CO2	Ability to apply Fourier transform to differential equations.	Skill Development
CO3	Ability to apply the concept of Probability to some physics problems.	Skill Development
CO4	Ability to apply the theory of bifurcation and fractals to natural patterns	Skill Development
Prerequisites (if any)		

Section- A

Complex Analysis

Review of Complex Arithmetic; Complex Differentiation: Analyticity of Complex Functions,

Examples of analytic functions. Singular functions: poles and branch points Cauchy Riemann

Conditions; Complex Integration: Cauchy Integral Theorem, Cauchy Integral Formula, Derivative as Integral; Complex Series: Taylor and Laurent Series; Residues and Residue Theorem, application in solving Definite Integrals.

Section - B

Fourier Transforms

Fourier Transforms: Fourier Integral theorem, Fourier Transform, Fourier Transform of Derivatives, Properties of Fourier Transforms (Translation, Change of Scale, Complex Conjugation, etc.), Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations

Section - C

Introduction to probability

Independent random variables: Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance. Dependent events: Conditional Probability. Bayes' Theorem and the idea of hypothesis testing.

Section- D

Introduction to Group Theory, Non Linear Method and Chaos

Abstract group, subgroups, classes, cosets, factor group, normal subgroups, direct product of groups, lie groups, rotation and unitary groups, representation of SO(3), SU(2), SU(3) tensors. Introduction to nonlinear method and chaos, nonlinear differential equations, Introduction to bifurcation and fractals

Text and Reference Books

- 1. A Text Book of Differential Equations By N. M. Kapoor (Pitambar Publishing, 2006)
- 2. Schaum's outline of theory and problems of differential equations By Richard Bronson (McGraw-Hill Professional, 1994)
- 3. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Limited, 1985)
- 4. Higher Engineering Mathematics by B S Grewal, Khanna Publishers (2000)
- 5. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7th Edn., Elsevier.(Text Book)
- 6. An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
	Mathemat	CO1	3	3	3	-	•	3	2	•	-	3	-	-	-	ı
PHH20	ical	CO2	3	3	3	-	•	3	2	•	•	3	-	-		•
2B-T	Physics -	CO3	3	3	3	-	-	3	3	-	-	3	-	-	-	-
	III	CO4	3	2	3	-	-	3	3	-	-	2	-	-	-	-

Course Title/Code	Mathematical Physics - III Lab (PHH	I202B-P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To study complex analysis, Fourier transform, probation Non Linear Method and Chaos applicable to different	
	Course Outcomes (COs)	Mapping
CO	Ability to solve problems using Scilab.	Skill Development
Prerequisites (if any)		

List of Experiments

- 1- Integral solution by residue method.
- 2- Solution of Definite integrals.
- 3- To find the poles of a functions.
- 4- Problems on Fourier Transform.
- 5-Solution of one dimensional Wave Equation.
- 6-Solution of Diffusion Equation.
- 7-Solution of Heat Flow Equation.
- 8- Problems on probability.

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH20 2B-P	Mathemat ical Physics - III Lab	со	3	3	3	-	-	3	2	-	-	3	-	-	1	-

Course Title/Code	Electromagnetic Theory (PHH203B-T)										
Course Type	Core										
L-T-P Structure	3-1-0										
Credits	4										
Course Objective To study formulation of Maxwell's Equations and transmission waves in different media and in transmission lines											
	Course Outcomes (COs)	Mapping									
CO1	Ability to convert to different coordinate system	Skill Development									
CO2	Ability to explain the properties of Maxwell equations and apply to simple systems	Skill Development									
CO3	Ability to explain transmission of E M waves in transmission lines	Skill Development									
CO4	Ability to explain the smith chart in transmission line	Skill Development									
Prerequisites (if any)											

Section - A

Elements of Vector Calculus

Spherical, Cylindrical and CartesianCoordinate Systems and Transformation, Vector calculus: Differential length, area and volume, line surface and volume integrals, del operator, gradient of a scalar, divergence of a vector and divergence theorem, curl of a vector and Stoke's theorem, Laplacian of a scalar.

Section -B

Maxwell's Equations

Maxwell Equations in differential form, Displacement Current, Vector and Scalar Potentials, Boundary Conditions at Interface between Different Media, Wave Equations, Time-varying potentials, Time-Harmonic Fields, Waves in general, Plane waves in free space

Section -C

Time Dependent Fields & Waves

Wave propagation in lossy dielectrics, Plane waves in lossless dielectrics, plane waves in good conductors, power and the pointing vector Electromagnetic Energy Density., Reflection of a plain wave in a normal incidence, Reflection of a Plane Wave at Oblique Incidence.

Section - D

Transmission Lines: Transmission Line Parameters, Transmission Line Equations, Smith chart; Input Impedance, SWR and Power, S-parameters, Some Applications of Transmission Lines, Transients on Transmission Lines, EM spectrum.

Text and Reference Books

- 1. Introduction to Electrodynamics by A.Z.Capri&P.V.Panat.(New Delhi: NarosaPub.House, 2002)
- 2. Electromagnetics by Joseph A.Edminister 2nd ed.(New Delhi: Tata McGraw Hill, 2006).
- 3. Fundamentals of electromagnetics by M.A.W.Miah.(Tata McGraw Hill,1992)
- 4. Applied electromagnetism By Liang Chi Shen, Jin Au Kong (PWS Pub. Co., 1995)
- 5. David J. Griffiths, Introduction to Electrodynamics, 3rd edition, (Benjamin Cummings 1998).
- 6. J. D. Jackson, Classical Electrodynamics, 3rd edition, (Wiley, New York 1998)

		Cours														
Course	Course	e	PO													
Code	Course	Outco	1	2	3	4	5	6	7	8	9	10	11	12	13	14
		me														,
	Electromag netic theory	CO1	3	3	2	1	2	2	2	2	2	2	•	-	-	-
PHH20		CO2	3	2	3	2	2	3	3	2	1	3	-	-	-	-
3В-Т		CO3	2	3	2	1	2	3	3	3	2	3	-	-	-	-
		CO4	3	3	2	2	2	3	2	3	2	2	-	-	-	-

Course Title/Code	Electromagnetic Theory Lab (PHH203B-P)										
Course Type	Core										
L-T-P Structure	0-0-2										
Credits	1										
Course Objective	To study formulation of Maxwell's Equations and waves in different media and in transmission lines	transmission of E-M									
	Course Outcomes (COs)	Mapping									
CO	Ability to demonstrate different phenomena related										
Prerequisites (if any)											

List of Experiments

- 1. To verify the law of Malus for plane polarized light.
- 2. To determine the specific rotation of sugar solution using Polarimeter.
- 3. To analyze elliptically polarized Light by using a Babinet's compensator.
- 4. To study dependence of radiation on angle for a simple Dipole antenna.
- 5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.
- 6. To study the reflection, refraction of microwaves.
- 7. To study Polarization and double slit interference in microwaves.
- 8. To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.
- 9. To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
- 10. To study the polarization of light by reflection and determine the polarizing angle for air-glass interface.
- 11. To verify the Stefan's law of radiation and to determine Stefan's constant.
- 12. To determine the Boltzmann constant using V-I characteristics of PN junction diodes.

Course Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH20 3B-P	Electromag netic theory Lab	СО	3	3	2	1	2	2	2	2	2	2	-	-	-	-

Course Title/Code	French I/Spanish I/German I (FLS103/FLS	S101/FLS102)								
Course Type	Allied Elective									
L-T-P Structure	1-1-0									
Credits	2									
Course Objective	To describe themselves, other people, familiar pla discourse using simple sentences and basic vocabul									
	Course Outcomes (COs)	Mapping								
	Ability to exchange greetings and do introductions									
CO1	using formal and informal expressions	Skill Development								
	Ability to Learn Basic vocabulary that can be used									
CO2	to discuss everyday life and daily routines, using simple sentences and familiar vocabulary	Skill Development								
CO3	Ability toexpress their likes and dislikes. Also will have understanding of simple conversations about familiar topics (e.g., greetings, weather and daily activities,) with repetition when needed	Skill Development								
CO4	Ability toidentify key details in a short, highly-contextualized audio text dealing with a familiar topic, relying on repetition and extra linguistic support when needed.	Skill Development								
Prerequisites (if any)										

French I

Section-A

- Les Salutations & forms of politeness
- Alphabets
- Taking leave expressions

Section-B

- Les pronomssujets
- Les verbes ER
- Self introduction

Section-C

- Les noms
- VerbesAvoir, Etre, Aller& Faire
- Les articles define et indefini

Section-D

- Les moin de l'annee
- les jours de la semaine
- Repondez aux questions

Spanish I

Section-A

- Presentation on Spanish language
- Greetings and goodbye's
- Spanish letter
- Introduction of VerboSER

Section-B

- Uses of Verbo SER
- Introduction of Nationality
- Professions and vocabulary related to professions.
- Adjectives related to Verbo SER.
- Counting till number 20.

Section-C

- Introduction of Articles and Indefinite articles
- Interrogatives
- Adjectives to describe things and place and Counting till number 90

_

Section-D

- Introduction of Verbo ESTAR
- Uses of Verbo ESTAR with respect to positioning of objects
- Prepositions related to the positioning of an object

German I

Section-A

Salutations/Greetings

• Introduction

Section-B

- Introduction cntd.
- Alphabets
- Numbers 1-20

Section-C

- Personal pronouns
- Hobbies and professions

Section-D

- Café related vocabulary and dialogues
- Revision personal pronouns

Section-E

• Café related vocabulary and dialogues cntd.

Common verbs and their conjugations

Course Code	Cours e	Cours e Outco me	P	P O2	P O3	P O4	P O5	P 06	P O7	P 08	P 09	PO 10	PO 11	PO 12	PO 13	PO 14
	Frenc	CO1	1	1	•	•	1	•	1	•	1	1	1	-	1	-
EI C102/EI C101/	h	CO2	1	1	•	•	1	•	1	•	1	1	1	-	1	-
FLS103/FLS101/ FLS102	1/Span ish	CO3	1	1	•	•	1	•	1	•	1	1	1	-	1	-
	I/Ger man I	CO4	1	1	-	_	1	_	1	-	1	1	1	_	1	-

Course Title/Code	Applied Philosophy (EDS288)	
Course Type	Allied Elective	
L-T-P Structure	1-0-2	
Credits	2	
Course Objective	e experience of self,	
	others and the society. Course Outcomes (COs)	Mapping
CO1	Ability to read critically the philosophy of influential philosophers with respect to society, Science and success in life	Skill Development
CO2	Ability to understand and apply concepts and theories of moral philosophy.	Skill Development
CO3	Ability to reflect philosophically and ethically on their own personal, professional and civic lives.	Skill Development
CO4	Ability to formulate for himself or herself a philosophy of life or world-view consistent with the objectives of liberal society.	Skill Development
Prerequisites (if any)		

SECTION - A

INTRODUCTION TO PHILOSOPHY: Philosophy: Meaning, Nature and Scope, Practical uses of Philosophy, Branches of Philosophy.

SECTION - B

THOUGHTS OF PHILOSOPHERS AND THEIR IMPLICATIONS: General Philosophy of John Dewey, Swami Vivekananda and RabindraNath Tagore, Philosophy of life and success: Steve Jobs, N.R. NarayanaMurthi, Dr. A.P.J. Abdul Kalam and Muhammad Yunus, Philosophy of Science and technology- Francis Bacon and Martin Heidegger.

SECTION - C

PHILOSOPHICAL PERSPECTIVES OF SOCIO-POLITICAL SCENARIO IN INDIA:

Nature of Democracy and its implications, Meaning and requirements of National Integration, Universal Human Rights

SECTION - D

PHILOSOPHICAL PERSPECTIVES OF RELIGIOUS SCENARIO IN INDIA: Secularism—its nature and implications, Moral Philosophy of religion with special reference to Hinduism, Jainism, Buddhism, Islam, Christianity, Sikhism. Religious pluralism and Religious tolerance.

Text and Reference Books

- 1. Bhatia, K. & Bhatia, B. (1974) The Philosophical and Sociological Foundations of Education. Delhi: Doaba House.
- 2. Brubacher, John. S. (1969). Modern Philosophies of Education, New Delhi: Tata McGraw-Hill
- 3. Dewey, J. (1966). Democracy in Education, New York: Macmillan.
- 4. Ferre, F.(1995). Philosophy of Technology. University of Georgia Press.
- 5. Gandhi, M. K. (1956). Basic Education. Ahmedabad, Navajivan.
- 6. Goel, A. &Goel S. L. (2005). Human values and Education. New Delhi: Deep and Deep Publications Pvt. Ltd.
- 7. Palmer, Joy A. et.al. (2001). Fifty major thinkers on education from confucious to Dewey. New Delhi: Rutledge.
- 8. Rajput, J.S. (2006). Human Values and Education. New Delhi: Paragon Publications.
- 9. Walia, J.S. (2011). Philosophical, Sociological and Economic Bases of Education.

List of Experiments

- 1. Prepare and present a report on 'philosophy of life' from the perspective of a young adult.
- 2. Quiz and interactive sessions on various philosophical perspectives of contemporary philosophers.
- 3. Organization of and participation in street plays /dramas/ declamation/ debates/ any other suitable activity on any theme of Philosophical perspectives of Socio-Political scenario in India.
- 4. Group discussions on any suitable topics concerning contemporary society like aggression among youth, Over-ambitiousness in young generation, misuse of democracy, implications of secularism etc. and to reflect upon different viewpoints.
- 5. Preparation of quotation boards to display quotes of great philosophers in the college premises.
- 6. Picture interpretation and philosophical reflection on social themes like juvenile crime, begging in India, Social networking etc.
- 7. Readings from the autobiographies and other publications of great philosophers e.g. 'Wings of Fire' followed by discussion session.
- 8. Showing Videos on Unique personalities: life and philosophies followed by reflection exercises.
- 9. Any other suitable activity.

CO-PO Mapping

Cours e Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
EDS2 88	APPLIED PHILOSO PHY	CO1	2	1	-	-	1	-	1	-	1	1	1	_	1	-
		CO2	1	2	-	-	1	-	1	-	1	1	1	-	1	-
		соз	1	1	-	-	2	-	1	-	1	1	1	-	2	-
		CO4	1	1	-	-	1	-	1	-	1	1	2	-	1	-

Course Title/Code	Applied Psychology (EDS289)	Applied Psychology (EDS289)								
Course Type	Allied Elective									
L-T-P Structure	1-0-2									
Credits	2									
Course Objective	To define psychology and its applications in various f	ïelds.								
	Course Outcomes (COs)	Mapping								
CO1	Ability to understand the conceptual framework of attitude along with cherishing out their attitude development	Skill Development								
CO2	Ability to conceptualize psychology in social and organizational settings.	Skill Development								
CO3	Ability to maintain and reform group dynamics.	Skill Development								
CO4	Ability to understand the conceptual framework of personality along with cherishing out their personality development.	Skill Development								
Prerequisites (if any)										

Section -A

PSYCHOLOGY: ATTITUDE FORMATION

Psychology: Meaning, nature, and scope, Role of psychology across multi-disciplinary aspects, Introduction: Attitude, Stereotypes, Prejudice, and Discrimination, Formation of attitude and attitude change.

Section-B

PERSONALITY AND PERSONALITY DEVELOPMENT

Definition of personality and personality development, State/ Trait approach to personality, Bandura's Social-Cognitive theory of personality

Section -C

SOCIAL PSYCHOLOGY

Introduction to social identity, social cognition, and social influence, social conflicts and its resolutions, Group dynamics: Introduction, formation, types of groups, cooperation, competition, and conflict in groups

Section - D

ORGANIZATIONAL PSYCHOLOGY

Organizational Psychology: Definition, fundamental concepts and importance, Introduction to job satisfaction, work motivation, and organizational commitment. Introduction to participation, empowerment, and team work

Text and Reference Books

- 1. Arrow, K. J. (1995). Barrier to Conflict Resolution. NY: W. W. Norton.
- 2. Bandra, A., & Walters, R. H. (1963). Social Learning and Personality Development. New York: Holt, Rinehart, & Winston.
- 3. Bandra, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice- Hall, Inc.
- 4. Baron, R. A., Byrne, D. (1997). Social Psychology (8th Ed.). Boston, MA: Allyn& Bacon.
- 5. Baron, R. A. (2001). Psychology (5th ed.). London: Pearson.
- 6. Cialdini, R. B. (2001). Influence: Science and Practice (4th Ed.). Boston, MA: Allyn& Bacon
- 7. Feldman, R. S. (2008). Essentials of Understanding Psychology. New Delhi: Tata McGraw Hill.
- 8. Friedkin, N. (1998). A structural theory of social influence. Cambridge: Cambridge University Press.
- 9. Gage, N. L., & Berliner, D. C. (1992). Educational Psychology (5th Ed.). Boston, MA: Houghton Mifflin Co.
- 10. Hall, C. S., Lindzey, G. & Campbell, J. B. (2004). Theories of Personality (4th Ed.). New York: Wiley.
- 11. Hunt, R. R., & Ellis, H. C. (2006). Fundamentals of Cognitive Psychology. New Delhi: Tata McGraw Hill.
- 12. McDavid, J. M., &Harari, H. (1994). Social Psychology: Individuals, Groups, and Societies. New Delhi: CBS Publishers.
- 13. Millward, L. (2005). Understanding Occupational and Organizational Psychology. London: Sage Publications.

List of Experiments

- 1. Prepare a story using different pictures in order to understand the personality
- 2. Prepare a SWOT Chart to identify strength and weakness of oneself
- 3. Role of psychology be proved as an asset in professional development
- 4. Give a brief account of your personality before and after the transaction of course content.
- 5. Identify different stereotype present in our Society and present your views on it.
- 6. Collect any five articles on discrimination prevalent in Society
- 7. List out Company incentives provided to their employee for work motivation.
- 8. Prepare a street play on social issues to understand the group dynamics
- 9. Reflection activities to understand the emotions and personality
- 10. List out the Do's and Don'ts of the Interview

- 11. Role of body language in attitude formation.
- 12. Situational Activities: Suppose you are captain of your football team. Draw out inputs to motivate your team, and maintain the team-spirit.
- 13. Write a brief note on any one attitude you want to change in yourself and the strategies to accomplish it.
- 14. The psychometric tests to be conducted by learners:
- 15. Sociometry test
- 16. Personality testing (16PF)
- 17. Vineland Social Maturity Scale
- 18. Rorschach inkblot test
- 19. Thematic Appreciation Test
- 20. Color personality Test
- 21. Any other suitable activities.

Cours e Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
	EDS2 Applied	CO1	2	1	•	•	1	1	1	-	1	1	1	_	1	-
EDS2		CO2	1	2	1	1	1	1	1	1	1	1	1	-	1	-
89	Psycholo gy	CO3	1	1	1	1	2	1	1	-	1	1	1	_	2	-
		CO4	1	1	•	1	1	•	1	•	1	1	2	-	1	-

Course Title/Code	Applied Sociology (EDS290)							
Course Type	Allied Elective							
L-T-P Structure	1-0-2							
Credits	2	2						
Course Objective	To study the various contemporary issues of socie research skills in area of sociology.	ty and develop basic						
	Course Outcomes (COs)	Mapping						
CO1	Ability to discuss the fundamental concepts of sociology and its applications.	Skill Development						
CO2	Development of the analytical skills of students about ways in which social processes affect our everyday lives.	Skill Development						
CO3	Ability to understand the impact of various processes of social change and assess their impact on society.	Skill Development						
CO4	Ability to analyze the social cultural dynamics that contribute to transformation of Indian reality	Skill Development						
Prerequisites (if any)								

Section - A

Introduction and Applications of Sociology:

- Society, Community, Social Institutions, Social Groups, Introduction to Applied Sociology
- Sociology and Social Processes
- Sociology and Social Change
- Sociology and Social Problems
- Clinical Sociology

Section - B

Sociological Processes:

- Social Stratification, Social Mobility and their impact on society
- Socialization, Agents of Socialization, Assessing the effects of Socialization
- Social Movements: Concept, Impact of Environmental Movements in India: Chipko Movement, Narmada BachaoAndolan

Section - C

Processes and Issues of Social Change:

- Social Change: Westernization, Urbanization, Privatization, Globalization, Sustainable development
- Issues in urban development-Population, poverty, unplanned growth and ecological issues
- Conflict management:

B.Sc.(H) Physics ManavRachna University

- o Intergroup: Causes, Resolutions
- o Organizational Conflict, Conflict Management and Grievance Handling

Section - D

Field Survey & Report Writing:

- Need, Meaning of Survey
- Types of Survey
- Steps in Conducting Survey
- Data Collection Methods
- Salient Features of Report Writing

Text and Reference Books

- 1. Andrew, W. (1997) Introduction to the Sociology of Development. New Jersey, Palgrave Macmillan.
- 2. Berg, L.B. (2001). Qualitative Research Methods for the Social Sciences (4th edition). Boston: Allyn and Bacon
- 3. Bhatia, H.(1970). Elements of Social Psychology. Bombay: Somaiyya Publications Pvt Ltd.
- 4. Bhattacharyya D.K (2009). Organizational Behavior, Oxford University Press, UK.
- 5. DastuptaDriskle(2007): Discourse on Applied Sociology Volume-II, 2007
- 6. Desai, B Sonalde et al. (2010). Human Development in India: Challenges for a Society in Transition. OUP
- 7. Deshpande, S.(2003). Contemporary India: A Sociological View. New Delhi: Viking.
- 8. Hall R.H (2009). *Organizational Structures, Processes & outcomes, Asia*: Pearson Education Publications.
- 9. Hodegetts R M. (2009). Organizational Behavior, Macmillan.
- 10. McMichael.P. (1996). Development and Social change: A global perspective. California Thousand Oaks.
- 11. Merton, R and Nisbet, (1976) Contemporary Social Problems, New York: Harcourt, Brace and World.
- 12. Metha, S. (2009). Women and Social Change, Jaipur: Sage.
- 13. Michael Edwards (2011). Civil Society in India, edited The Oxford Handbook of Civil Society, Oxford, Oxford University Press
- 14. Mitra et.al. (2009). Democracy, Agency and Social Change in India, New Delhi: Sage
- 15. Pratt henry Fairchild(2009): Outline of Applied Sociology, 2009
- 16. Sirclaus Moser & G. Kalton: Survey Methods in Social Investigation, Heinemann Educational Books, London.
- 17. Sanderson. (2010). Social Psychology, New York: John Wiley.
- 18. Tepperman, L. & Curtis, J. (Eds.) (2009). Principles of Sociology: Canadian perspectives. Don Mills, ON: Oxford University Press.
- 19. Young, K. (2001). Handbook of Social Psychology, London: Routledge and Kegal Paul Ltd.

List of Experiments

- 1. Showing Videos on the life and philosophies of Famous sociologists and to acquaint the students about their different theories
- 2. Preparation of quotation board with the help of displaying the pictures and quotes of famous sociologists
- 3. Choose a theme of your interest- for e.g., crime, technology environmental concerns or any other and look through the Sunday editorials of any national daily of the last 3 months to locate related articles.
- 4. Role Play: Gender issues in everyday life, students will form small groups and present skits to address this issue creatively; this will be followed by discussions.
- 5. Students may be given the assignment of taking pro-active role in initiating social change in a local field
- 6. Visit a shopping mall and observe the interaction between employees and customers/visitors. Identify themes based on your observation and prepare a questionnaire based on this experience.
- 7. Look at a set of published letters of Gandhi, Nehru, C.F. Andrews and Tagore etc. and identify key social issues that are discussed in the contents of the letters and prepare a report on it.
- 8. Students will be asked to write a short essay on the pressures they feel of the experience in performing masculinity or femininity, Presentations and discussions based around the essays.
- 9. Debate or discussion on "Is the family the site of love and care" or "Is the family democratic?"
- 10. Discuss the impact of modernization, industrialization and globalization on the day-today life.
- 11. Students may be asked to apply any applied research technique
- 12. Design a survey on factors effecting marriage choices of young people. Any other suitable activity

CO-PO Mapping

Cours e Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	2	1	_	-	1	-	1	•	1	1	1	•	1	•
EDS2	APPLIED SOCIOLO	CO2	1	2	-	-	1		1	•	1	1	1	-	1	-
90	GY _	CO3	1	1	•	•	2	•	1	·	1	1	1	•	2	•
		CO4	1	1	-	-	1		1	-	1	1	2	-	1	-

Course Title/Code	Basics of Economics (MCS231)							
Course Type	Allied Elective							
L-T-P Structure	1-0-2	1-0-2						
Credits	2							
Course Objective								
	Course Outcomes (COs)	Mapping						
CO1	Acquaint the students with the fundamental knowledge Economics and its basic laws and principles.	Employability and Skill Development						
CO2	Understand the theories of demand and supply and practically identify the different factors that affect demand and supply.	Employability and Skill Development						
CO3	Analyze the different types of costs that form part of a production process and relate it with the laws of production.	Skill Development						
CO4	Understand and evaluate the different types of markets operating in an industry.	Skill Development						
Prerequisites (if any)								

Section-A

Definition of Economics - various definitions, Nature of Economic problem, Production possibility curve, Concepts and measurement of utility, Law of Diminishing Marginal Utility, Law of equi-marginal utility - its practical application and importance.

Section-B

Meaning of Demand, Individual and Market demand schedule, Law of demand, shape of demand curve, Elasticity of demand, degrees of Price elasticity of demand, factors effecting elasticity of demand, practical importance & applications of the concept of elasticity of demand.

Section-C

Meaning of production and factors of production, laws of production, various concepts of cost - Fixed cost, variable cost, average cost, marginal cost, money cost, real cost and opportunity cost. Shape of short run cost curves.

Section-D

Meaning of Market, Types of Market -Perfect Competition, Monopoly, Oligopoly, Monopolistic Competition (Main features of these markets). Supply and Law of Supply, Role of Demand & Supply in Price Determination and effect of changes in demand and supply on prices.

Text and Reference Books

- 1. Principles of Economics: P.N. Chopra (Kalyani Publishers).
- 2. Economics for Engineers- T R Jain & O P Khanna
- 3. Micro Economic Theory M.L. Jhingan (S.Chand).
- 4. Micro Economic Theory H.L. Ahuja (S.Chand).
- 5. Modern Micro Economics: S.K. Mishra (Pragati Publications).
- 6. Economic Theory A.B.N. Kulkarni& A.B. Kalkundrikar (R.Chand& Co.).
- 7. Indian Economy: RudarDutt& K.P.M. Sundhram

CO-PO Mapping

Cours e Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
	Basics	CO1	2	1	-	-	1	-	1	-	1	1	1	-	1	-
of		CO2	1	2	-	-	1	-	1	-	1	1	1	-	1	-
MCS2 31	Econom ics	CO3	1	1	-	-	2	-	1	-	1	1	1	-	2	-
	MCS23	CO4	1	1	-		1	-	1	•	1	1	2	-	1	-

Course Title/Code	Fundamentals of Finance (MC	Fundamentals of Finance (MCS232)							
Course Type	Allied Elective	Allied Elective							
L-T-P Structure	1-0-2								
Credits	2								
Course Objective									
	Course Outcomes (COs)	Mapping							
CO1	Acquaint the students with the fundamental concepts of Financial Management& time Value of Money.	Skill Development							
CO2	Enable students to take decisions using Capital Budgeting techniques	Skill Development							
CO3	Enable students to understand and apply concepts of working capital management.	Skill Development							
CO4	Enable students to analyze and apply the concepts of firm's value, capital structure theories, and dividend policy decisions.	Skill Development							
Prerequisites (if any)									

Section-A

Introduction to Finance; Forms of Business Organization; Overview to financial statements, Balance Sheet, Profit and Loss Account, Cash Flow Statement.

Section-B

Financial Analysis and Planning; Financial Ratios, Break Even Analysis Sources of Long term Finance – Equity Capital, Preference Capital, Terms Loans, Debentures; Raising Long term Finance.

Section-C

Time Value of Money, Capital Budgeting- Techniques of Capital Budgeting, Net Present Value and Payback Period; Capital Structure and Cost of Capital.

Section-D

Working Capital: Introduction, Components of Current Assets and Current Liabilities, Operating Cycle, Estimation of Working Capital; Operating Income, Earning Before Interest and Tax (EBIT).

Text and Reference Books

- 1. Pandy, I.M., Financial Management, Vikas Publishing House, New Delhi
- 2. Khan M.Y, and Jain P.K., Financial Management, Tata McGraw Hill, New Delhi

- 1. Keown, Arthur J., Martin, John D., Petty, J. William and Scott, David F, Financial Management, Pearson Education
- 2. Chandra, Prasanna, Financial Management, TMH, New Delhi
- 3. Van Horne, James C., Financial Management and Policy, Prentice Hall of India
- 4. Brigham & Houston, Fundamentals of Financial Management, Thomson Learning, Bombay.
- 5. Kishore, R., Financial Management, Taxman's Publishing House, New Delhi

Cours e Code	Course	Cours e Outco me		PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	2	1	-	-	1	-	1	-	1	1	1	-	1	-
MCS2	Fundamen	CO2	1	2	-	-	1	-	1	-	1	1	1	-	1	-
	tals of	CO3	1	1	•	•	2	•	1	•	1	1	1	•	2	-
	Finance	CO4	1	1	-	-	1	-	1	-	1	1	2	-	1	-

Course Title/Code	Quantitative Aptitude-I (CDO203)							
Course Type	Allied Elective	Allied Elective						
L-T-P Structure	1-1-0							
Credits	2							
Course Objective	tive To prepare students with the concepts of quantitative techniques require in aptitude test of various competitive exams & placements.							
	Course Outcomes (COs)	Mapping						
СО	The students would be able to solve problems related to HCF, LCM, Ratio and Proportions, , Permutation Combination, Probability & data analytics	Skill Development						
Prerequisites (if any)								

Section -A

Unit 1: Number System

1.1 **Simplification**

- 1.1.1 BODMAS rule
- 1.1.2 Fractions and recurring decimals
- 1.1.3 Surds and indices

1.2 **Numbers**

- 1.2.1 Types of numbers and number tree
- 1.2.2 Divisibility Rule
- 1.2.3 HCF & LCM

Section-B

Unit 2: Arithmetic I

2.1 **Percentages**

2.2 Ratio & Proportion

- 2.2.1 Proportionality
- 2.2.2 Variations
- 2.2.3 Partnership

2.3Profit & Loss

- 2.3.1 Basic terminology & Formulae
- 2.3.2 Error in Weights
- 2.3.3 Marked Price and Discounts

2.4Average

2.5Interest

- 2.5.1 Simple Interest
- 2.5.2 Compound Interest
- 2.5.3 Relation between SI & CI

Section - C

Unit 3: Arithmetic II

3.1 Time & Work

- 3.1.1 Time and Work, Chain Rule
- 3.1.2 Work & Wages
- 3.1.3 Pipes & Cisterns

3.2 Time, Speed & Distance

- 3.2.1 Basics Formulas & Proportionality
- 3.2.2 Average & Relative Speed
- 3.2.3 Trains and Boats & Streams
- 3.2.4 Circular Motion and Clocks

3.3 Alligation & Mixtures

Section - D

Unit 4: Reasoning Ability

- 4.1 Clocks
- 4.2 Coding Decoding
- 4.3 Arithmetic Reasoning
- 4.4 Blood Relation Test
- 4.5 Direction Sense Test

Text and Reference Books

- 1. Quantitative Aptitude for Competitive Examinations: R S Aggarwal, S Chand & Company Pvt Ltd, Edition 2017
- 2. A Modern Approach to Verbal & Non Verbal Reasoning: R S Aggarwal, S Chand & Company Pvt Ltd, Edition 2018

CO – PO MAPPING

Cours e Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
CDO2 03	Quantitat ive Aptitude- I	CO1	1	-	-	-	-	1	1	-	1	ı	-	1	1	1
		CO2	1	-	-	2	-	-	ı	-	-	-	-	-	1	1
		CO3	1	-	-	-	-	1	-	-	-	-	-	1	1	1
		CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2

Semester-IV

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective / University Compulsory)	L	Т	P	NO. OF CREDITS
MAH411- T	Numerical Analysis	MA	CORE	3	1	0	4
MAH411- P	Numerical Analysis Lab	MA	CORE	0	0	2	1
PHH 205B-T	Thermodynamics	PH	CORE	3	1	0	4
PHH205B- P	Thermodynamics Lab	РН	CORE	0	0	2	1
РНН 206В-Т	Solid State Physics	РН	CORE	3	1	0	4
PHH206B- P	Solid State Physics Lab	PH	CORE	0	0	2	1
ECS306B	E-Waste Environmental Problems & Management/	ECE		1	0	2	2
CHS234	Environmental Ethics and Sustainable Development	СН	GE	1	0	2	2
PHN207	Mini Project	РН		0	0	4	2
CDO204	Quantitative Aptitude-II	CDC		2	0	0	2
CDO205	Career Skills - I	CDC		2	0	0	0

TOTAL (L-T-P-/CREDITS)	10 3	8	17
------------------------	------	---	----

Detailed Syllabus

Course Title/Code	Numerical Analysis (MAH411-	Γ)
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To apply the concepts of numerical techniques requiremathematical problems and their applications.	red for solving the
	Course Outcomes (COs)	Mapping
CO1	Ability to identify and compute the interpolating polynomial for equispaced and unequispaced intervals.	Skill Development
CO2	Ability to find roots of nonlinear and transcendental equation. and fit a curve to the given data	Skill Development
CO3	Ability to solve & analyze the Mathematical problems related to Numerical Analysis and its applications using software	Skill Development
CO4	Ability to Solve system of linear equation by using direct and iterative methods and Compute Eigen values and Eigen vectors for symmetric and non-symmetric matrices	Skill Development
Prerequisites (if any)		

Section - A

Solution of nonlinear & transcendental equations: Bracketing methods for locating a root, initial approximations and convergence criteria, bisection method, RegulaFalsi, Newton-Raphson and secant method.

Interpolation and curve fitting: Introduction to interpolation, Lagrange approximation, Newton's formula for equispaced& non equispaced points (forward, backward and divided difference), Hermite interpolation. Curve fitting by a straight line and a second degree curve and laws reducible to linear law.

Section-B

Numerical differentiation and integration: Approximating the derivatives, numerical differentiation formulas (forward, backward and central), introduction to numerical quadrature, Newton-cotes formula, Gaussian quadrature - Gauss Legendre & Gauss Chebyshev's.

B.Sc.(H) Physics ManavRachna University

Section - C

Solution of linear systems: Direct methods, Gaussian elimination, matrix inversion, iterative methods for linear systems (Gauss Seidel & Gauss Jacobi), LU decomposition. Eigen value problems: Jacobi, Given's and Householder's methods for symmetric matrices, power and inverse power methods.

Section -D

Solution of differential equations: Introduction to differential equations, Initial value problems, Picard's method, Taylor series method, Euler's methods, classical method of Runge-Kutta method of order IV, Predictor-Corrector methods(Milne's & Adam's Bashforth).

Text and Reference Books

- 1. M.K. Jain, S.R.K. Iyengar and R.K.Jain, "Numerical Methods for Scientific and Engineering Computation", New Age international Publishers.
- 2. Laurene V, Fausett, "Applied Numerical Analysis using MATLAB", Pearson.
- 3. S.S. Sastry, "Introductory Methods of Numerical Analysis", Published by Prentice Hall of India.

CO-PO Mapping

Course Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
		CO1	3	-	3	-	-	2	-	3	-	-	-	3	•	-
	Numeri	CO2	3	-	3	-	-	2	-	3	-	-	-	3	-	-
MAH4	cal	CO3	3	-	3	-	-	3	-	3	-	-	-	2	-	-
11 –T	Analysi s	CO4	3	-	3	-	-	3	-	2	-	-	-	3	-	-

Course Title/Code	Numerical Analysis Lab (MAH41)	1 -P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To apply the concepts of numerical techniques requiremathematical problems and their applications.	red for solving the
	Course Outcomes (COs)	Mapping
CO1	Ability to solve & analyze the Mathematical problems related to Numerical Analysis and its applications using software	Skill Development
CO2	Ability to solve system of linear equation by using direct and iterative methods and Compute Eigen values and Eigen vectors for symmetric and non-symmetric matrices	Skill Development
Prerequisites (if any)		

LIST OF EXPERIMENTS

- 1. To find roots of an equation using Bisection method.
- 2. To find roots of an equation using RegulaFalsi method.
- 3. To find roots of an equation using Newton Raphson method.
- 4. To find roots of an equation using Secant method.
- 5. To find the value of a dependent variable for a given value of an independent variable using Lagrange's interpolation method for a given set of data.
- 6. To find the value of a dependent variable for a given value of an independent variable using Newton divided difference interpolation for a given set of data.
- 7. To find the value of a definite integral using Trapezoidal rule of integration.
- 8. To find the value of a definite integral using Simpson's 1/3 rule of integration.
- 9. To find the value of a definite integral using Simpson's 3/8 rule of integration.
- 10. To find the solution of an ordinary differential equation of first order by R-K method

Course Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
		CO1	3	-	3			2	•	3	•	-	-	3	-	-
MAH4 11 –P	Numeri cal Analysi s Lab	CO2	3	-	3	1	-	2	•	3	•	-	-	3	-	

Course Title/Code	THERMODYNAMICS (PHH205)	B-T)
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To study laws of thermodynamics and thermodynamic	c relations
	Course Outcomes (COs)	Mapping
CO1	Ability to demonstrate and apply first law of thermodynamics. Compare different thermodynamic processes	Skill Development
CO2	Ability to demonstrate a clear understanding of second and third law of thermodynamics. Apply basic concept of heat and entropy in real life problems	Skill Development
CO3	Ability to explain various thermodynamical potentials and second order phase transitions in daily life scenario	Skill Development
CO4	Ability to compare different distribution of velocities in gases and compare the concepts of ideal and real gas	Skill Development
Prerequisites (if any)		

Section-A

Zeroth and First Law of Thermodynamics: Extensive and Intensive Thermodynamic Variables, Thermodynamic Equilibrium, Concept of Work and Heat, State Functions, First Law of Thermodynamics and its Differential Form, Internal Energy, General Relation between C_P and C_V , Work Done During Isothermal and Adiabatic Processes, Reversible and Irreversible Process with Examples

Section-B

2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and Their Equivalence, Carnot Engine & Efficiency Carnot's Theorem, Concept of Entropy, Second Law of Thermodynamics in Terms of Entropy, Principle of Increase of Entropy, Entropy and Disorder, Entropy Changes in Reversible and Irreversible Processes with Examples, Third Law of Thermodynamics, Unattainability of Absolute Zero

Section-C

Derivations and Applications of Maxwell's Relations, Expressions for (C_P-C_V) and C_P/C_V , Tds Equations, Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy, Cooling due to Adiabatic Demagnetization, First and Second Order Phase Transitions with Examples, Claussius - Clapeyron Equation

Section-D

Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas, Mean, RMS & Most Probable Speeds, Mean Free Path (Zeroth Order), Transport Phenomenon in Ideal Gases: Viscosity, Thermal Conductivity, Deviations from the Ideal Gas Behavior, Van der Waal's Equation of State for Real Gases, Free Adiabatic Expansion of a Perfect Gas, Joule-Thomson Coefficient

Text and Reference Books

- 1. Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- 2. A Treatise on Heat, MeghnadSaha, and B.N.Srivastava, 1958, Indian Press
- 3. Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- 4. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger.
 1988, Narosa.
- Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press.

Course Code	Course	Cours e Outco me	P	P O2	P O3	P O4	P O5	P 06	P O7	P 08	P O9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	3	3	2	2	2	3	•	2	•	2	2	2	2	-
PHH20	Thermodyn	CO2	3	3	3	3	2	3	-	3	-	2	2	3	2	-
5B-T	amics	CO3	3	3	2	2	2	3	-	2	-	2	1	2	1	-
		CO4	3	3	2	1	2	3	-	2	-	2	1	2	1	-

Course Title/Code	THERMODYNAMICS LAB (PHH2	05B-P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To demonstrate laws of thermodynamics	
	Course Outcomes (COs)	Mapping
СО	Ability to demonstrate thermodynamic processes and determine important thermodynamic parameters	Skill Development
Prerequisites		
(if any)		

List of Experiments

- 1. To determine J by Callender and Barne's constant flow method
- 2. To determine the Coefficient of Thermal Conductivity of Copper by Searle's Apparatus
- 3. To determine the Coefficient of Thermal Conductivity of Copper by Angstrom's Method
- 4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method
- 5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT)
- 6. To calibrate a Resistance Temperature Device (RTD) to measure temperature in a specified range using Null Method/ Off-Balance Bridge with Galvanometer based Measurement
- 7. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions
- 8. To Calibrate a Thermocouple to measure Temperature in a Specified Range using (1) Null Method (2) Direct Measurement using an Op-Amp Difference Amplifier and to determine Neutral Temperature
- 9. To determine the viscosity of a fluid.

Course Code	Course	Cours e Outco me	P O1	P O2	P O3	P O4	P O5	P O6	_	P O8		PO 11	PO 12	PO 13	PO 14
PHH20 5B-P	Thermodyn amics Lab	CO1	3	3	2	2	2	3	-	2	2	2	2	2	•

Course Title/Code	Solid State Physics (PHH206B-	Τ)
Course Type	Core	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To study and analyze different types of crystal magnetic, dielectric and superconducting properties of	
	Course Outcomes (COs)	Mapping
CO1	Ability to analyze the XRD pattern and determine the crystal structure of a material	Skill Development
CO2	Ability to describe and measure the electrical and magnetic properties of materials.	Skill Development
CO3	Ability to describe and measure dielectric properties of materials.	Skill Development
CO4	Ability to describe the properties of materials in a superconducting state.	Skill Development
Prerequisites (if any)		

Section-A

Crystal Structure

Crystalline Solids – Polycrystalline and Single Crystal Form, Amorphous Solids, Lattice and Basis, Unit Cell, Crystal Systems, Crystal Symmetry, Space Groups, Bravais Space Lattices, Miller Indices, Lattice Planes, Inter-planar Spacing, Some Simple Crystal Structures (SC, BCC, FCC, HCP and Diamond), X-ray Diffraction, Bragg's Law, Determination of Crystal Structure with X-rays Using Powder Method.

Section-B

Electrical Properties of Solids

Classical Free Electron Theory of Metals, Wiedeman-Franz's Law, Quantum Theory of Free Electrons, Band Theory of Solids: Periodic Potential and Bloch Theorem, Kronig-Penney Model, E-k Curves, Brillouin Zones, Effective Mass, Band Structure in Conductors, Semiconductors and Insulators, Direct & Indirect Band gap Semiconductors, Drift Current, Mobility and Conductivity, Hall Effect

Section-C

Magnetic properties of materials

Review of Basic Concepts (origin of magnetism, magnetic moment, Magnetization and Magnetic susceptibility) Dia, Para and Ferro-magnetic Properties of Solids, Langevin's Theory of Diamagnetism and Paramagnetism, Quantum Theory of Paramagnetism, Curie's Law, Ferromagnetism: Spontaneous Magnetization and Domain Structure; Temperature Dependence of Spontaneous Magnetization; Curie-Weiss Law, Hysteresis Curve, Antiferromagnetism, Ferrimagnetism

Section-D

Dielectric properties of materials and superconductivity

Review of Basic Concepts, Classification of Dielectric Materials, Concept of Polarization, Three Electric Vectors, Local Field, Electronic, Ionic and Dipolar Polarization, Behavior of Dielectrics in A.C. Field, Concept of Local Field, Polarizability, Claussius-Mosotti Relation, Ferroelectricity, Piezoelectricity, Applications.

Introduction (Kamerlingh-Onnes experiment), Effect of Magnetic Field, Type-I and Type-II Superconductors, Isotope Effect, Meissner Effect, Heat Capacity, Energy Gap, London Equations and Explanation of Persistent Current and Meissner Effect, BCS Theory, Applications of Superconductivity.

Text and Reference Books

- 1. Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- 2. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- 3. Solid State Physics, S.O. Pillai
- 4. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- 5. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- 6. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- 7. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- 8. Solid State Physics, M.A. Wahab, 2011, Narosa Publication

B.Sc.(H) Physics ManavRachna University

CO – PO MAPPING

Course Code	Cour se	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
	Solid	CO1	2	3	-	-	2	3	-	2	-	•	3	-	•	•
PHH206		CO2	3	3	3	-	3	2	-	2	-	2	-	1	2	-
B-T	Physi	CO3	3	3	3	-	2	2	-	2	-	2	-	2	3	1
	cs	CO4	3	3	3	-	3	3	-	3	-	2	-	1	1	1

Course Title/Code	Solid State Physics Lab (PHH206)	B-P)
Course Type	Core	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To study and analyze different types of crystal magnetic, dielectric properties of materials	structures, electrical,
	Course Outcomes (COs)	Mapping
CO1	Ability to analyze the XRD pattern and determine the crystal structure of a material.	Skill Development
CO2	Ability to describe and measure the electrical and magnetic properties of materials.	Skill Development
CO3	Ability to describe and measure dielectric properties of materials.	Skill Development
Prerequisites (if any)		

LIST OF EXPERIMENTS

- 1. To verify Richardson Dushmann equation and to determine work function of the cathode material.
- 2. To determine carrier concentration of a semiconductor using Hall Effect setup.
- 3. Determination of retentivity and coercivity of a ferromagnetic substance by plotting B-H curve.
- 4. To determine crystal structure and lattice parameters of a material by analyzing XRD Data.
- 5. To determine dielectric constant of a material using De-Sauty Bridge.
- 6. To determine energy band gap using reverse biased P-N junction diode.
- 7. To determine energy band gap of a semiconductor using four probe method.
- 8. To measure the Dielectric Constant of a dielectric Materials with frequency.
- 9. To determine the susceptibility of a paramagnetic material.

CO – PO MAPPING

Course Code	Cour se	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
PHH206 B-P	Solid	CO1	2	3	-	-	2	3	-	2	-	•	3	-	-	-
	State	CO2	3	3	3	-	3	2	-	2	-	2	-	1	2	-
	Physi cs Lab	соз	3	3	3	-	2	2	-	2	-	2	-	2	3	1

Course Title/Code	Environmental Ethics & Sustainable Development	(CHS234)										
Course Type	Allied Elective											
L-T-P Structure	2-0-0											
Credits	2											
Course Objective	To describe, explain and analyze the sustainable development concerns a challenges.											
	Course Outcomes (COs)											
CO1	Ability to develop an inter-disciplinary understanding of sustainable development concerns;	Skill Development										
CO2	Ability to recognize the challenges of sustainable development; the opportunities and limits in meeting these challenges	Skill Development										
CO3	Ability to defend or criticize the sustainability initiatives adopted by different enterprises.	Skill Development										
Prerequisites (if any)												

Section - A

Introduction to Sustainable Development

Definition of Sustainable Development; Triple Bottom Line, Components of TBL, Changing Perspective & Debates in Sustainable Development - Need for Sustainable Development, Evolution of the concept of Sustainable Development: Stockholm Conference, The Brundtland Commission, Earth Summit, Agenda 21; Millennium Development Goals

Section - B

Challenges to Sustainable Development and Sustainable Development Goals (SDGs)

Challenges to Sustainable Development - Agriculture, Population & Food Security, Public Health and Nutrition, Education, Natural Resources (Forests, Energy, Water), Climate Change Sustainable Development Goals (SDGs) - Introduction, Challenges to SDGs, Indian Scenario.

Section - C

Sustainability Strategies & Reporting

Sustainability Strategies & Reporting - Introduction, Rationale and Mechanisms, Key Principles, Sustainability Strategies Adopted by Different Enterprises – Case Studies

Section - D

Sustainable Development and Contemporary Issues

Sustainable Consumption, Indigenous Knowledge, Gender Issues, Population & Sustainable Agriculture, Sustainable Tourism

List of Experiments/Activities

- 1. Survey Business and non-business students' perception towards TBL (based on the readings listed above); inferences on the basis of survey; http://www.aabri.com/manuscripts/121249.pdf
- 2. Workshop based Sustainable agriculture- Mushroom farming
- 3. Workshop based Back to nature DIY composting bin
- 4. Review Sustainable Consumption in India: Challenges and Opportunities; Divesh Kumar, Praveen Goyal, ZillurRahman, Ishwar Kumar; IJMBs Vol. 1, Issue 3, September 2011; http:://www.ijmbs.com/13/devesh.pdf
- 5. Calculate Carbon Footprint/Ecological footprint
- 6. Stimulus Activity (Piece of writing) Sustainable Consumption
- 7. CSR Workshop for Village school children
- 8. Simulation Activity Challenges to Sustainable Development Case Studies - Sustainability initiatives @ TATA Motors, CAIRN INDIA, Mahindra & Mahindra, Subaru Isuzu, Disney, Novo Nordisk, etc

Text and Reference Books

- 1. Environmental Management for Sustainable Development; C.J. Barrow; Routledge Publishers
- 2. Roberts, J.T., and Hite, A., 2000, From Modernization to Globalization Perspectives on Development and Social Change, Blackwell Publishing
- 3. Sachs, J., 2004, Stages of Development, Speech at the Chinese Academy of Arts and Sciences
- 4. Giddings, B., Hopwood, B., and Geoff O'Brien, 2002, Environment, Economy and Society: Fitting Them Together into Sustainable Development, Published online in Wiley Inter Science (www.interscience.wiley.com). DOI: 10.1002/sd.199

Cours e Code	Course	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
CHS2	Environme ntal Ethics &Sustaina ble Developme	CO1	-	-	3	-		-	-	-	-	-	3	2	-	3
		CO2	-	-	3	-	1	1	•	-	1	•	2	3	-	2
	nt	CO3	-	-	3	-	ı	1	1	-	•	•	3	3	•	3

Course Title/Code	CYBER CRIMES & LAWS (LWS323)											
Course Type	Elective (Allied)											
L-T-P Structure	1-1-0											
Credits	2											
Course Objective	To make students understand the concept of Cyber Crimes & Cyvarious aspects relating to it, enhance their understanding of proout of online transactions and stimulate them to find solution Intellectual Property issues in the cyber space and the growth and of the law in this regard, help them understand Information Technology Amendment Act 2008.	blems arising s, clarify the development										
	Course Outcomes (COs)	Mapping										
CO1	Understand the concept of Cyber crimes and cyber Law	Skill Development										
CO2	Critically analyze the problems arising out of online transactions and find solutions	Skill Development										
CO3	Analyze Intellectual Property issues in the cyber space and apply relevant laws to protect or fight in figment	Skill Development										
CO4	Understand Information Technology Act 2000 and critically analyze various sections to apply such laws appropriately Skill Development											
Prerequisites (if any)	N.A											

Section – A

Unit 1: Cyber Crimes: Meaning, Categories & Kinds

- A. Cyber Crime: Meaning & Categories
- B. Nature of Cyber Crime, Cyber Crimes v. Conventional Crimes
- C. Kinds of Cyber Crime- hacking, spamming, phishing, cyber stalking, cyber pornography, malware etc.

Section - B

Unit 2: Privacy Issues & Access Rights

- A. Freedom of speech and expression in Cyberspace.
- B. Right to Privacy and Right to Data Protection.
- C. Access Rights

Section C

Unit 3: Cyber Space & Legal framework

- A. Cyber Security
- B. Cyber Space, Concept of Property in Cyber Space
- C. Jurisdiction in Cyber Space

Section D

Unit 4: Information and Technology Act 2000 & IT Amendment Act 2008 (Contact Hours - 3)

- A. Need of Cyber Law in India
- B. Enactment & Scheme of the IT Act
- C. Objectives of the IT Act 2000, Amendments to the Act
- D. Justice Dispensation System for Cyber Crimes under IT Act

TEXT& REFERENCE BOOKS

- 1. Sushma Arora & Raman Arora, Cyber Crimes & Laws, Taxmann's
- 2. Pavan Duggal, Cyber Law.

CO-PO Mapping

Cour se Code	Cou rse Na me	Cour se Outc ome	<u>P</u> <u>O</u> <u>1</u>	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 2	<u>PO</u> <u>10</u>	<u>PO</u> <u>11</u>	<u>PO</u> <u>12</u>	<u>PO</u> <u>13</u>	<u>PO</u> <u>14</u>
LWS 323	Cyb er crim es & laws	CO1	2	1	-	-	-	-	2	-	-	1	-	3	-	-
		CO2	3	2	-	-	-	-	-	-	2	-	-	1	1	-
		CO3	3	1	2	-	-	1	-	1	-	1	-	2	1	-
		CO4	3	1	-	-	-	-	-	-	-	-	-	3	1	-

Course Title/Code	E-Waste: Environmental Problems and Management (ECS306B)											
Course Type	Allied Elective											
L-T-P Structure	1-0-2	1-0-2										
Credits	2											
Course Objective	To describe, explain and analyze the environmental conc challenges.											
	Course Outcomes (COs)	Mapping										
CO1	Gain a better understanding and appreciation for the challenges related to waste management.	Skill Development										
CO2	Create awareness about environmental impacts of e-waste.	Skill Development										
CO3	Identify various components of e-waste	Skill Development										
Prerequisites (if any)												

Section - A

INTRODUCTION: E-Waste, Indian and global scenario of e-Waste, Growth of Electrical and Electronics industry in India, E-waste generation in India, Composition of e-waste, Possible hazardous substances present in e-waste, Environmental and Health implications.

Section - B

E-WASTE LEGISLATION: Regulatory regime for e-waste in India, The hazardous waste(Management and Handling) rules 2003, E- waste management rules 2015, Regulatory compliance including roles and responsibility of different stakeholders — producer, manufacturer, consumer etc., Proposed reduction in the use of hazardous substances (RoHS) & REACH, Extended producer responsibility (EPR).

Section - C

END OF LIFE MANAGEMENT OF E-WASTE: Historic methods of waste disposal – dumping, burning, landfill; Recycling and recovery technologies – sorting, crushing, separation; Life cycle assessment of a product – introduction; Case study – optimal planning for electronic waste.

Section - D

ENVIRONMENTALLY SOUND E-WASTE MANAGEMENT: Emerging recycling and recovery technologies, Guidelines for environmentally sound management of e-waste, environmentally sound treatment technology for e-waste, Guidelines for establishment of

integrated e-waste recycling and treatment facility, Case studies and unique initiatives from around the world.

List of Experiments:

- 1. Identify the hazardous materials present in printed circuit boards.
- 2. Extraction of copper of printed circuit boards in etching solution.
- 3. Demo of recycling process through videos.
- 4. Extraction of precious metal from e Waste.
- 5. Invited guest lecture.
- 6. Field visit to a waste management initiative in NCR.
- 7. Activity based learning: survey of the household practice of e-waste disposal and awareness.
- 8. Case study presentation and group discussion.

Text and Reference Books

Electronic Waste Management, R E Hester, R M Harrison, RSC publishing. E Waste: Implications, Regulations and Management in India and current global practices, RakeshJohri, TERI PRESS.

Course	College	Cours	PO													
Code		Outco me	1	2	3	4	5	6	7	8	9	10	11	12	13	14
ECS30 6B	E-Waste: Environme ntal Problems and Manageme nt	CO1	-	-	3	-	-	-	-	-	-	-	3	2	-	3
		CO2	-	-	3	-	•	-	-	-	-	-	2	3	-	2
		CO3	-	-	3	•	ı	•	ı	•	•	ı	3	3	ı	3

Course Title/Code	Quantitative Aptitude-II (CDO204)								
Course Type	Allied Elective								
L-T-P Structure	1-1-0								
Credits	2								
Course Objective	To prepare students with the concepts of quantitative techniques required in aptitude test of various competitive exams & placements.								
	Course Outcomes (COs)	Mapping							
СО	The students would be able to solve problems related to HCF, LCM, Ratio and Proportions, , Permutation Combination, Probability & data analytics	Skill Development and Employability							
Prerequisites (if any)	Quantitative Aptitude-I (CDO203)								

Unit 1: Number System

- 1.1 Factors and Multiples
- 1.2 Unit Digits & Cyclicity
- 1.3 Remainders
- 1.4 Factorials
- 1.5 Logarithm

Unit 2: Modern Mathematics

2.1 **Permutation and Combination**

- 2.1.1 Principal of counting and Basic formulas
- 2.1.2 Arrangements, Selection and Selection + Arrangement.
- 2.1.3 Linear/Circular arrangements, Digits and Alphabetic Problems and Applications.

2.2 **Probability**

- 2.2.1 Events and Sample Space, Basic Formulas.
- 2.2.2 Problems on Coins, Cards and Dices.
- 2.2.3 Conditional Probability, Bayes' Theorem and their Applications.

Unit 3: Data Analytics

3.1 **Data Interpretation**

- 3.1.1 Table and Bar graph
- 3.1.2 Line and Pie Charts
- 3.1.1 Mixed Charts and Caselets

3.2 **Data Sufficiency**

Unit 4: Area & Volume

4.1 Mensuration I- Areas

- 4.1.1 Different types of Triangles and their area and perimeter.
- 4.1.2 Different types of Quadrilateral and their area and perimeter.
- 4.1.3 Circumference and Area of Circle, Area of Sector and length of Sector.
- 4.1.4 Mixed Figures and their Applications.

4.2 Mensuration II- Surface Areas and Volumes

- 4.2.1 Problems on Cubes & Cuboids, Cone, Cylinder and Sphere.
- 4.2.2 Prism and Pyramid.
- 4.2.3 Mixed Figures and their Applications.

Unit 5: Logical Reasoning

- 5.1 Seating Arrangement
- 5.2 Ranking
- 5.3 Syllogism
- 5.4 Calendar
- 5.5 Ages & Numbers

Text Books/Reference Books:

- 1. Quantitative Aptitude for Competitive Examinations: R S Aggarwal, S Chand & Company Pvt Ltd, Edition 2017
- 2. A Modern Approach to Verbal & Non Verbal Reasoning: R S Aggarwal, S Chand & Company Pvt Ltd, Edition 2018

Instructions for paper setting: Fifty MCQ will be set in total. All questions will be compulsory. Each question will be of 1 mark. There will be no negative marking. Calculator will not be allowed.

<u>CO – PO MAPPING</u>

Cours e Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	1	-	-	-	1	1	-	-	1	ı	-	1	1	1
	Quantitat	CO2	1	-	-	2	-	-	-	-	-	-	-	-	1	1
CDO2 04	ive Aptitude-	CO3	1	-	-	-	-	1	-	-	-	-	-	1	1	1
	II	CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2
		CO5	1	2	-	1	1	1	1	1	1	3	1	2	1	2

Course Title/Code	Career Skill - I (CDO205)	
Course Type	Allied	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To prepare students for placements, Interviews.	
	Course Outcomes (COs)	Mapping
CO1	Ability to solve problems based on arithmetic & number system.	Skill Development and Employability
CO2	. Ability to develop logical acumen and solve problems based on verbal reasoning & simplification.	Skill Development and Employability
CO3	Ability to calculate the correct answers to the problems within given time.	Skill Development and Employability
CO4	Ability to plan their career meticulously by setting their time oriented goals.	Skill Development and Employability
CO5	Ability to introspect and enhance their Personality and Employability skills.	Skill Development and Employability
CO6	Ability to develop cultural sensitivity and communicate respectfully across cultures.	Skill Development and Employability
Prerequisites (if any)		

Part A – Quantitative Aptitude

Unit 1: Arithmetic Aptitude I

- 1.1 Mixture & Alligation
- 1.2 Number System 2
- 1.2.1 Unit digit
- 1.2.2 Remainders
- 1.2.3 Factors
- 1.2.4 Factorials

1.3 Data Interpretation

Unit 2: Reasoning

- 2.1 Number, Ranking & Time sequence Test
- 2.2 Syllogism
- 2.3 Logical Reasoning
- 2.3.1 Seating Arrangement
- 2.3.2 Linear and Circular arrangement puzzle
- 2.3.3 Cross Variable puzzle

Part B – Soft Skills

Unit 3: Personality Development

- 3.1 Concept of personality
- 3.2 Self awareness
- 3.2.1 Different learning styles
- 3.2.2 Areas of Self awareness
- 3.2.3 Developing self-awareness

3.3 Goal Setting

- 3.3.1 Five principles of goal setting
- 3.3.2 Setting "SMART" goals
- 3.3.3 6P's of goal setting
- 3.3.4 SWOT analysis
- 3.4.5 Short term & Long term goals

Unit 4: Presentation Skills

- 4.1 Designing the presentation
- 4.2 Audience and content analysis
- 4.3 Delivering the presentation- Preparation, Practice, Performanc

Unit 5: Professional Communication

- 5.1 Email writing
- 5.2 Diction and Speech Clarity
- 5.3 LSRW & Introduction to verbal ability as an assessment tool for employability

CO - PO Mapping

Course Code	Cour se	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
		CO1	1	-	-	-	-	1	-	-	-	-	-	1	-	1
		CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1
CDO2	Caree	CO3	1	1	-	-	1	1	-	-	-	-	-	1	-	1
05	r Skill I	CO4	1	1	-	1	1	1	-	-	1	3	-	2	1	2
		CO5	1	-	-	1	-	1	-	-	1	3	-	2	1	2
		CO6	1	2	-	1	1	1	1	1	1	3	1	2	1	2

Semester-V

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective / University Compulsory)	L	Т	P	NO. OF CREDITS
РНН301В-Т	Statistical Physics	РН	CORE	3	1	0	4
РНН301В-Р	Statistical Physics Lab	РН	CORE	0	0	2	1
РНН302В-Т	Digital Electronics	РН	CORE	3	1	0	4
РНН302В-Р	Digital Electronics Lab	РН	CORE	0	0	2	1
РНН303В-Т	Condensed Matter Physics	РН	CORE	3	1	0	4
РНН304В-Т	Modern Physics	РН	CORE	3	1	0	4
РНН304В-Р	Modern Physics Lab	РН	CORE	0	0	2	1
PHN305	Project Work (Minor)-3	РН	CORE	0	0	0	4
CDO303	Career Skill II	CDC		2	0	0	0
	TOTAL (L-T- P-/CREDITS)			12	4	6	23

SEMESTER V

Detailed Syllabus

Course Title/Code	Statistical Physics (PHH301B-T)								
Course Type	Core (Deptt.)								
L-T-P Structure	3-1-0								
Credits	4								
Course Objective	To discuss basic concepts of Statistical Physics and apply them to solve real problems								
	Course Outcomes (COs)	Mapping							
CO1	Discuss and interpret experiments that reveal the properties of matter at microscopic and macroscopic levels as well as how this motivates in generating thermodynamic function for gasses with their limitations.	Skill Development							
CO2	Understand the central concepts and principles in statistical mechanics including the classical and quantum theory of radiation, such as the Wien's Displacement laws, Rayleigh-Jeans Laws, Stefan-Boltzmann Laws and apply these laws in solving problems and analyzing the relationships/missing information in solving the real time applications.	Skill Development							
CO3	Apply the statistics for discussing Bose-Einstein Distribution Laws, with evaluating the applications and properties of Liquid He, Photon Gas and analyses of Planck's Law.	Skill Development							
CO4	Apply the statistics for discussing Fermi-Dirac Distribution Laws, with evaluating the applications and properties of degenerate Fermi gasses, Fermi Energy.	Skill Development							
Prerequisites (if any)									

Section - A

Classical Statistics

Concept of Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Ensemble Concept, Partition Function, Thermodynamic Functions of Finite

B.Sc.(H) Physics ManavRachna University

Number of Energy Levels, Negative Temperature, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Law of Equipartition of Energy-Applications to Specific Heat and its Limitations.

Section - B

Classical and Quantum Theory of Radiation

Properties of Thermal Radiation, Blackbody Radiation, Pure temperature dependence, Radiation Pressure, Kirchhoff's law, Stefan-Boltzmann law: Thermodynamic proof, Wien's Displacement law, Wien's Distribution Law, Saha's Ionization Formula, Rayleigh-Jeans Law, Spectral Distribution of Black Body Radiation, Planck's Quantum Postulates, Planck's Law of Blackbody Radiation: Deduction of Wien's Distribution Law, Rayleigh-Jeans Law, Stefan-Boltzmann Law and Wien's Displacement Law from Planck's Radiation Law.

Section - C

Bose-Einstein Statistics

B-E Distribution Law, Thermodynamic Functions of a Strongly Degenerate Bose Gas, Bose Einstein Condensation, Properties of Liquid He (Qualitative Description), Radiation as a Photon Gas and Thermodynamic Functions of Photon Gas, Bose Derivation of Planck's Law.

Section - D

Fermi-Dirac Statistics

Fermi-Dirac Distribution Law, Thermodynamic Functions of a Completely and Strongly Degenerate Fermi Gas, Fermi Energy, Electron Gas in a Metal, Specific Heat of Metals, Relativistic Fermi Gas, White Dwarf Stars, Chandrasekhar Mass Limit

Text and Reference Books

- 1. Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- 2. A Treatise on Heat, MeghnadSaha, and B.N. Srivastava, 1969, Indian Press.
- 3. Statistical and Thermal Physics by S. Loknathan and R.S. Gambhir.
- 4. Statistical Mechanics by AvijitLahiri.
- 5. Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.

B.Sc.(H) Physics ManavRachna University

CO - PO Mapping

Course Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
		CO1	3	3	3	-	3	3	3	-	-	2	-	-	1	1
PHH301	Statisti	CO2	3	3	3	-	3	3	3	-	-	2	-	-	1	1
B-T	cal	CO3	3	3	3	-	3	3	3	-	-	2	-	-	1	1
	Physics	CO4	3	3	3	-	3	3	2	-	-	2	-	-	1	1

Course Title/Code	Statistical Physics Lab (PHH301B-P)								
Course Type	Core (Deptt.)								
L-T-P Structure	0-0-2	0-0-2							
Credits	1	1							
Course Objective	To apply the basic concepts of Statistical Physics and apply them to solve real problems								
	Course Outcomes (COs)	Mapping							
СО	Ability to apply the basic ideas of Programming and create new program based on the given facts and/or related knowledge using the theory of Statistical Mechanics and evaluate the results of open end problem on Programmable languages such as Matlab App/Octave	Skill Development							
Prerequisites (if any)									

List of Experiments

Use C/C++/Scilab for solving the problems based on Statistical Mechanics like

- 1. Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.
- 2. Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases.

6133459274

- 3. Plot Maxwell-Boltzmann distribution function versus temperature.
- 4. Plot Fermi-Dirac distribution function versus temperature.
- 5. Plot Bose-Einstein distribution function versus temperature.

Text and Reference Books

1. Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444

B.Sc.(H) Physics ManavRachna University

2. Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub.

CO – PO MAPPING

Course Code	Course	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
PHH301	Statistic al Physics Lab	CO	3	3	3	1	3	3	2	1	1	2	1	1	1	1

Course Title/Code	Digital Electronics (PHH302B-7	Digital Electronics (PHH302B-T)										
Course Type	Core (Deptt.)	Core (Deptt.)										
L-T-P Structure	3-1-0	3-1-0										
Credits	4	4										
Course Objective	To outline the formal procedures for the ana combinational and sequential circuits	llysis and design of										
	Course Outcomes (COs)	Mapping										
CO1	Ability to discussthe application of number system and digital logic design in real life applications.	Skill Development										
CO2	Ability to design the combinational circuits using MSI.	Skill Development										
CO3	Ability to design and analyze synchronous and asynchronous sequential circuits	Skill Development										
CO4	Ability to discuss the various types of memory devices	Skill Development										
Prerequisites (if any)												

Section- A

Basic Digital Circuits and Operational Amplifier

Difference between Analog and Digital Circuits, Binary Numbers, Decimal to Binary and Binary to Decimal Conversion, BCD, Octal and Hexadecimal numbers, AND, OR and NOT Gates (realization using Diodes and Transistor), NAND and NOR Gates as Universal Gates, XOR and XNOR Gates and Application as Parity Checkers, Basic Characteristics of Op-Amps, Characteristics of an Ideal Op-Amp, Feedback in Amplifiers, Openloop and Closed loop Gain, Frequency Response, CMRR, Virtual ground, Applications of Op-Amps

Section - B

Boolean algebra and Data processing circuits

De Morgan's Theorems, Boolean Laws, Simplification of Logic Circuit using Boolean Algebra, Fundamental Products, Idea of Minterms and Maxterms, Conversion of a Truth table into Equivalent Logic Circuit by Sum of Products Method and Karnaugh Map, Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders

Section - C

Arithmetic and Sequential Circuits

Binary Addition, Binary Subtraction using 2's Complement, Half and Full Adders, Half & Full Subtractors, 4-bit binary Adder/Subtractor, SR, D, and JK Flip-Flops, Clocked (Level and Edge Triggered) Flip-Flops, Preset and Clear operations, Race-around conditions in JK Flip-Flop, Master Slave JK Flip-Flop

Section – D

Shift registers and Computer Organization

Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits), Ring Counter, Asynchronous Counters, Decade Counter, Synchronous Counter Input/Output Devices, Data storage (idea of RAM and ROM), Computer Memory, Memory organization & addressing, Memory interfacing Memory Map, Main features and Components of 8085 Microprocessor, Block diagram.

Text and Reference Books

- Digital principles and applications By Donald P. Leach & Albert Paul Malvino, (Glencoe, 1995).(Text Book)
- 2. Digital Fundamentals, 3rd Edition by Thomas L. Floyd (Universal Book Stall, India, 1998).
- 1. Digital Electronics by R.P. Jain,
- Operational Amplifiers and Linear Integrated Circuits, 4th Edition by Robert F Coughlin and Frederick F Driscoll (P.H.I. 1992)
- 3. Op-Amps and Linear Integrated Circuits by R. A. Gayakwad (Pearson Education

B.Sc.(H) Physics ManavRachna University

Asia, 2000)

CO-PO MAPPING

Course Code	Course Name	Cours e Outco me		PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	3	3	3	3	-	2	3	2	3	3	2	2	2	2
DITIO	Digital	CO2	3	3	3	3	-	3	3	3	3	3	2	2	2	2
PHH30 2B-T	Electron	CO3	3	3	3	3	-	3	3	3	3	3	2	2	3	2
2D-1	ics	CO4	3	3	2	2	-	3	3	3	3	3	3	3	3	3
		CO5	3	3	3	3	-	3	3	3	3	2	2	2	2	2

Course Title/Code	Digital Electronics Lab (PHH302B-P)								
Course Type	Core (Deptt.)								
L-T-P Structure	0-0-2								
Credits	1								
Course Objective	To design the combinational and sequential circuits.								
	Course Outcomes (COs)	Mapping							
СО	Ability to interpret the design and working of a basic microprocessor.	Skill Development							
Prerequisites (if any)									

LIST OF EXPERIMENTS:

- 1. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 2. To design a combinational logic system for a specified Truth Table.
- 3. To convert a Boolean Expression into Logic Gate Circuit and assemble it using logic gate ICs.
- 4. To minimize a given Logic Circuit.
- 5. To design a Seven segment display driver
- 6. Half Adder, Full Adder and 4-bit Binary Adder.
- 7. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
- 8. To build Flip-Flop Circuits using elementary gates (RS, Clocked RS, D-type, and JK Flip-Flop).
- 9. To build a 4-bit Counter using D-type/JK Flip-Flop.
- 10. To make a Shift Register from D-type/JK Flip-Flop.
- 11. Serial and Parallel shifting of data.
- 12. To design an Inverting Amplifier of given gain using Op-amp 741 and to study its Frequency Response.
- 13. To design a Non-Inverting Amplifier of given gain using Op-amp 741 and to study its Frequency Response.
- 14. To design and study a precision Differential Amplifier of given I/O specification using Op-amp 741.

CO-PO Mapping

Cour se Code	Nome	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
PHH 302B- P	Digital Electronics Lab	СО	3	3	3	3	-	3	3	3	3	2	2	2	2	2

Course Title/Code	Condensed Matter Physics (PHH30	3B-T)
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To discuss structural, electrical, thermal and charac	terization techniques.
	Course Outcomes (COs)	Mapping
CO1	Ability to learn, understand, assimilate and demonstrate the knowledge about crystalline and amorphous substances, correlation of characteristic properties of solid with the nature of bonding, lattice, unit cell, miller indices, reciprocal lattice, concept of Brillouin zones and diffraction of X-rays by crystalline materials.	Skill Development
CO2	.Ability to learn, understand, assimilate and demonstrate the knowledge about behavior of free electrons in crystals.	Skill Development
CO3	Ability to learn, understand, assimilate and demonstrate the knowledge about lattice vibrations, phonons and in depth knowledge of Einstein and Debye theory of specific heat of solids.	Skill Development
CO4	Ability to learn, understand, assimilate and demonstrate the knowledge about structure unfolding Characterization techniques.	Skill Development
Prerequisites (if any)		

Section - A

Amorphous and crystalline state of matter. Crystal systems, bonding in crystals: covalent, ionic, metallic, hydrogen bond, vander Waal's bond and the Madelung constant. Crystalline solids, unit cell, primitive cell, Bravis lattices, Miller indices, closed packed structures. Atomic radius, lattice constant and density. Liquid crystals. X-ray diffraction-Bragg equation.

Section - B

Free electrons in solids, density of states, Fermi surface, Fermi gas at T=0 K, Fermi statistics, specific heat capacity of electrons in metals, thermionic emission of electrons from metals.

Section - C

Lattice dynamics of atoms in crystals, vibrations of monoatomic and diatomic linear chains, acoustic and optical phonon modes, density of states, thermal properties of crystal lattices, thermal energy of the harmonic Oscillator

Section - D

Basic of characterization techniques: FTIR, NMR, Powder XRD, UV-Vis.

Text and Reference Books

- 1. Wahab, M. A., "Solid state Physics: structure & properties of materials", 2nd Ed., Narora publishing house, New Delhi, 1999
- 2. Pillai, S. O., "Solid state Physics", 6th Ed., New Age Science, 2009
- 3. Singhal, R. L., "Solid state physics", 6th Ed., Kedarnath Ram Nath& co, Meerut, 1997
- 4. Banwell, C. N., "Fundamentals of molecular spectroscopy" 4th Ed., Tata McGraw -Hill Education., 1994
- 5. Cullity, B. D., "Elements of X-ray diffraction" Addision-Wesley Publishing Company, Inc., U.S.A, 1956
- 6. Kittel, C., "Introduction to solid state physics",7th Ed., Jhon Wiley & sons, Inc, New York,1996

CO-PO Mapping

Course Code	Course Name	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
	Conden	CO1	3	3	3	ı	3	3	-	-	ı	3	-	-	-	-
РНН30	sed	CO2	3	3	3	-	3	3	-	-	-	3	-	-	-	-
3В-Т	Matter	CO3	3	3	3	ı	3	3	-	-		3	-	-	-	-
	Physics	CO4	3	3	3	-	3	3	-	-	-	3	-	-	-	-

Course Title/Code	Modern Physics (PHH304B-T)
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To study and analyze different types of spectra, detectors	nuclear models and
	Course Outcomes (COs)	Mapping
CO1	Ability to apply concept of Length Contraction, Time Dilation, Velocity addition, Energy mass conversion, variation of mass with velocity.	Skill Development
CO2	Ability to calculate wavelength of different series of hydrogen atom and explain fine structure of the spectrum	Skill Development
CO3	Ability to explain spectrum of many electron systems.	Skill Development
CO4	Ability to explain nuclear properties and nuclear radiation detectors.	Skill Development
Prerequisites (if any)		

Section - A

Inertial and Non inertial frame of references, Michelson-Morley Experiment (Qualitative), Einstein's Postulates of Special Theory of Relativity, Lorentz Transformations, Length Contraction, Time dilation, velocity Addition Theorem, Variation of mass with velocity, Mass – Energy Equivalence Relation

Section - B

Bohr's Model of Hydrogen Atom, Spectral Series, Schrodinger Equation in Spherical Polar Coordinates, Hydrogen Atom (Qualitatively), Quantum Numbers and Selection Rules (Qualitative). Stern-Gerlach Experiment, Spin as an Intrinsic Quantum Number, Fine Structure

Section - C

Magnetic Moment of the Electron, Lande g-Factor, Vector Model – Space Quantization, Zeeman Effect, Pauli Exclusion Principle, Shell Structure. Hund's Rule, Spectroscopic Terms of Many Electron Atoms in the Ground State Diatomic Molecules—Rotational and Vibrational Energy Levels, Basic Ideas About Molecular Spectra, Raman Effect and Its Application to Molecular Spectroscopy (Qualitatively).

Section - D

Structure of nuclei

Basic Properties of Nuclei: Mass, Radii, Charge, Angular Momentum, Spin, Magnetic Moment (μ), Stability and Binding Energy.

Nuclear Models

Liquid Drop Model, Mass formula, Shell Model, Meson Theory of Nuclear Forces

Detectors of Nuclear Radiations

Interaction of Energetic particles with matter, Ionization chamber, GM Counter, Cloud Chambers, Wilson Cloud Chamber, Bubble Chamber, Scintillation Detectors, Semiconductor Detectors (Qualitative Discussion Only)

Text and Reference Books

- 1. Concepts of modern Physics A Beiser, S Mahajan & S R Chaudhary (Text Book)
- 2. Modern Physics-R A Serway, C J Moses & C A Moyer
- 3. Atomic and Molecular Spectra: Laser-R Kumar (Text Book)
- 4. Fundamentals of Molecular Spectroscopy-C N Banwell& E M Mccash
- 5. Introduction to Molecular Spectra H E White

CO-PO MAPPING

Course Code	Cours e Name	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
	Mode	CO1	3	3	3	-	2	2	-	-	-	1	-	1	1	-
PHH304	rn	CO2	3	3	2	-	2	2	-	-	-	1	-	1	1	-
В-Т	Physi	CO3	3	3	3	-	2	2	-	-	-	2	-	1	1	-
	cs	CO4	3	3	3	-	2	2	-	-	-	1	-	1	1	-

Course Title/Code	Modern PhysicsLab (PHH304B-	P)
Course Type	Core (Deptt.)	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To study and analyze different types of spectra, detectors	nuclear models and
	Course Outcomes (COs)	Mapping
СО	Ability to demonstrate the various phenomena of Modern Physics	Skill Development
Prerequisites (if any)		

List of Experiments

- Verification of Stefan's Law and Wien's displacement law by constructing Black Body Spectrum
- 2. Measurement of sodium doublet using Michelson Interferometer
- 3. Construction of Wave Packet by superposition of waves
- 4. Hydrogen spectra using Transmission Grating
- 5. Measurement of e/m of an electron
- 6. Measurement of Charge of an electron using Millikan Oil Drop method.
- 7. Measurement of energy Band Gap of intrinsic semiconductor by Four Probe Method
- 8. Measurement of Hall Effect.
- 9. Thermionic emission of electron
- 10. Energy band measurement for semiconductor diode/ diode laser.
- 11. To determine the wavelengths of Hydrogen spectrum and hence to determine the value of Rydberg's Constant.

- 11. To determine the value of Boltzmann Constant by studying Forward Characteristics of a diode.
- 12. To determine the value of Planck's constant by using a Photoelectric Cell.
- 13. To determine the value of Planck's constant by using LEDs of at least different Wavelengths.

CO-PO MAPPING

Course Code	Cours e Name	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
PHH304 B-P	Mode rn Physi cs LAB	СО	3	3	3	1	2	2	1	1	1	1	-	1	1	1

Course Title/Code	Career Skill – II (CDO303)	
Course Type	Allied	
L-T-P Structure	2-0-0	
Credits	0	
Course Objective	To prepare the students ready for placement.	
	Course Outcomes (COs)	Mapping
CO1	Ability to solve basic to moderate level problems based on Algebraic equations, Mensuration and Geometry.	Skill Development and Employability
CO2	. Ability to apply short tricks on complex problems of verbal reasoning.	Skill Development and Employability
CO3	Ability to apply correct usage of grammar in communication.	Skill Development and Employability
CO4	Ability to enhance their vocabulary and use it in day to day life.	Skill Development and Employability
CO5	Ability to develop speed reading & writing skills.	Skill Development
CO6	Ability to attempt aptitude questionnaire during placement drives, competitive examination prelims etc.	Skill Development and Employability
Prerequisites (if any)	Career Skill I (CDO205)	

Part A – Quantitative Aptitude

Unit 1: Geometry and Mensuration

1.1 Geometry

- 1.1.1 Basic geometry & Theorems, Lines & Angles
- 1.1.2 Polygons, Triangle and Quadrilaterals
- 1.1.3 Circles

1.2 Mensuration I- Areas

1.2.1 Different types of Triangles and their area and perimeter.

B.Sc.(H) Physics ManavRachna University

- 1.2.2 Different types of Quadrilateral and their area and perimeter.
- 1.2.3 Circumference and Area of Circle, Area of Sector and length of Sector.
- 1.2.4 Mixed Figures and their Applications.

1.3 Mensuration II- Surface Areas and Volumes

- 1.3.1 Problems on Cubes & Cuboids, Cone, Cylinder and Sphere.
- 1.3.2 Prism and Pyramid.
- 1.3.3 Mixed Figures and their Applications.

Unit 2: Algebra

- 2.1 Linear & Quadratic equations
- 2.2 Mathematical inequalities
- 2.3 Maximum & Minimum Values
- 2.4 Integral Solutions

Unit 3: Verbal Reasoning

- 3.1 Cubes & Dice
- 3.2 Inserting Missing Characters
- 3.3 Clocks

Part B - Employability Enhancement & Verbal Ability

Unit 4: Communication Accuracy

- 4.1 Relevance of Verbal Ability and preparatory guidelines
- 4.2 Functional Grammar Subject Verb Agreement
- 4.3 Tenses Perfect, Simple, Continuous
- 4.4 Common Errors and rectification

Unit 5: Word Power Building Skills

- 5.1 Words: Antonyms, Synonyms, Verbal Analogies
- 5.2 Compound words: Homophones, Homonyms, Word Families
- 5.3 Root Word Technique for Prefixes & Suffixes
- 5.4: Word Power: 7 Tips for Learning New Words
- 5.5 Practice Vocabulary Exercises

Unit 6: Reading & Writing Skills

- 6.1 Objectives of Reading, Definition & Types of Reading & Importance of Reading
- 6.2 Reading Techniques: SW3R, Active Reading, Detailed, Speed
- 6.3 Practice Exercises: Short & Medium Passages 3.1 Writing: Introduction of Writing Skills, Objectives of enhancing Writing Skills & Types of Writing
- 6.4 Sentences, Phrases, Types of Sentences, Parts of Sentences
- 6.5 Paragraph Writing: Construction, Linkage & Cohesion

Text Books/Reference Books:

- 1. Quantitative Aptitude for Competitive Examinations: R S Aggarwal, S Chand & Company PvtLtd, Edition 2017
- 2. A Modern Approach to Verbal& Non Verbal Reasoning: R S Aggarwal, S Chand & Company Pvt Ltd, Edition 2018
- 3. Verbal Ability and Reading Comprehension: MVN Enterprises

CO - PO Mapping

Course Code	Cour se	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4	
		CO1	1	-	-	-	-	1	-	-	-	-	-	1	-	1	
	Caree	CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1	
CDO3		Caree r Skill	CO3	1	-	-	-	-	1	-	-	-	-	-	1	-	1
03	- II	CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2	
	_		CO5	1	-	-	1	-	1	-	-	1	3	-	2	1	2
		CO6	1	2	-	1	1	1	1	1	1	3	1	2	1	2	

Semester-VI

COURSE CODES	COURSE NAME	OFFERING DEPARTMENT	COURSE TYPE (Core/Elective / University Compulsory)	L	Т	P	NO. OF CREDITS
РНН306В-Т	Electronic Devices	РН	CORE	3	1	0	4
РНН306В-Р	Electronic Devices Lab	РН	CORE	0	0	2	1
РНН310В-Т	Atmospheric Physics	РН		3	1	0	
РНН310В-Р	Atmospheric Physics Lab	PH		0	0	2	
РНН311В-Т	Computational Condensed Matter Physics	РН		3	1	0	
РНН311В-Р	Computational Condensed Matter Physics Lab	РН	Elective (Any Two)	0	0	2	10
РНН312В-Т	Laser Fundamentals and its Applications	РН		3	1	0	
PHH312B- P	Laser Fundamentals and its Applications Lab	РН		0	0	2	
CDO305	Career Skill III	CDC		2	0	0	0
PHN307	Major Project	PH	CORE	0	0	0	8
	TOTAL (L-T-P/CREDITS)	Datailed Syllah		9	3	6	23

Detailed Syllabus

Course Title/Code	Electronic Devices(PHH306B-T	·)
Course Type	Core (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Caura Objective	To discuss the working of diodes, transistors, electron	ic devices and simple
Course Objective	circuits	
	Course Outcomes (COs)	Mapping
CO1	Ability to understand, explain and demonstrate about semiconductors, various types of diodes and its applications in eletronics with problems and circuit diagram.	Skill Development
CO2	Ability to understand, construction and working of power handling devices such as SCR, UJT. Ability to understand construction and working of BJT with circuit diagram.	Skill Development
CO3	Ability to understand construction and working of JFET and MOSFET with circuit diagram.	Skill Development
CO4	Ability to understand about methods and steps for IC fabrication technology.	Skill Development
Prerequisites (if any)		

Section-A

Semiconductor Basics: Energy Bands in Solids, Density of States, Carrier Concentration at Normal Equilibrium in Intrinsic Semiconductors, Majority Carriers (electrons and holes), Dependence of Fermi Level on Temperature and Doping Concentration, Diode: P-N Junction Diode, Formation of Depletion Layer, and Space Charge at a Junction, Derivation of Electrostatic Potential Difference at Thermal Equilibrium, Depletion Width and Depletion Capacitance of Abrupt p-n Junction, Diode Equations and the I-V Characteristic, Zener Diode and Avalanche mechanism,

Section - B

Metal Semiconductor Junctions and Bipolar Junction Transistors (BJT):

Ohmic& Rectifying Contacts, PNP and NPN Transistors, Basic Transistor Action, Energy Band Diagram of Transistor in Thermal Equilibrium, Early Effect, Input and Output Characteristics of CB, CE and CC Configurations, CE Transistor as an Amplifier, Uni-Junction Transistor (UJT): Construction, Working and I-V Characteristics of UJT, Thyristor Devices: Basic Construction and Characteristics of Thyristor, Semiconductor Controlled Device (SCR), Characteristics and Two Transistor Model Of SCR

Section - C

Field Effect Transistors (FET)

Construction and Working of JFET, Idea of Channel Formation, Pinch-off Voltage, Transfer and Output Characteristics, MOSFET: MOS Diode, Basic Construction of MOSFET and Working, IV Characteristics, Enhancement and Depletion Modes, Complimentary MOS(CMOS).

Section-D

Semiconductor Fabrication Technology

Introduction to Semiconductor Technology, Basic Fabrication Steps: Wafer, Epitaxial Growth, Oxidation, Photolithography, Etching, Diffusion, Ion Implantation, Film Deposition and Metallization, Moore's Law, Medium Scale Integration (MSI), Large Scale Integration (LSI), Very Large Scale Integration (VLSI), Ultra Large Scale Integration (ULSI), Giant Scale Integration(GSI)

Text and Reference Books

- 1. S. M. Sze, Semiconductor Devices: Physics and Technology, John Wiley & Sons (2002)
- 2. Ben Streetman and S. Banerjee, Solid State Electronic Devices, Pearson Education (2006)
- 3. Jasprit Singh, Semiconductor Devices: Basic Principles, John Wiley and Sons (2001)
- 4. Kanaan Kano, Semiconductor Devices, Pearson Education (2004)

CO-PO MAPPING

Course Code	Course Name	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
		CO1	3	3	-	-	3	3	-	-	-	3	-	1	-	2
РНН306 В-Т	Electro nic Devices	CO2	3	3	2	-	2	2	-	-	-	2	-	-	-	2
		соз	3	2	2	-	3	2	-	-	2	2	-	-	-	2
		CO4	3	2	-	1	2	1	-	-	-	1	-	-	-	2

Course Title/Code	Electronic Devices Lab (PHH306B-P)					
Course Type	Core (Deptt.)					
L-T-P Structure	0-0-2					
Credits	1					
Course Objective	To discuss the working of diodes, transistors, electronic devices and simp circuits					
	Course Outcomes (COs)	Mapping				
СО	Ability to demonstrate working of various electronic devices.	Skill Development				
Prerequisites		•				
(if any)						

LIST OF EXPERIMENTS

- 1. To study (a) Half-wave Rectifier and (b) Full-wave Bridge Rectifier.
- 2. To investigate the effect of C, L and π filters.
- 3. To study the forward and reverse characteristics of a Zener Diode and to study its use as a Voltage Regulator.
- 4. To study the V-I Characteristics of p-n junction diode and hence to determine static and dynamic resistance.
- 5. To study the Characteristics of a Photo-diode.
- 6. To study the CE Characteristics of a Transistor.
- 7. To study the various Transistor Biasing Configurations as an amplifier
- 8. To design a CE Amplifier of a given gain (mid-gain) using Voltage Divider Bias.
- 9. To study the Frequency Response of Voltage Gain of a RC-Coupled Amplifier.
- 10. To study the Characteristics of a FET and design a common source amplifier.

CO-PO MAPPING

Course Code	Course Name	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH306 B-P	Electro nic Devices LAB	СО	3	3	-	-	3	3	1	1	1	3	-	1	1	2

Course Title/Code	Atmospheric Physics (PHH310B-T)							
Course Type	Elective (Deptt.)							
L-T-P Structure	3-1-0							
Credits	4							
Course Objective	To understand, explain and demonstrate various laws and concepts of essentials of Atmospheric Physics.							
	Course Outcomes (COs)	Mapping						
CO1	Ability to understand, explain and demonstrate various laws and concepts of essentials of Atmospheric Physics and further analyze and solve related problems.	Skill Development						
CO2	Ability to compare and explain various laws and concepts of atmospheric thermodynamics and solve related problems. They would further be able to formulate new problems related to atmospheric physics.	Skill Development						
CO3	Ability to understand, compare and analyze the concepts cloud microphysics of warm and cold clouds, their formation and solve various related problems. They would be able to hypothesize new related problems	Skill Development						
CO4	Ability to understand, explain and demonstrate concepts of ionosphere, its structure, formation, importance and analyze and solve problems related to various navigation and communication systems via ionosphere. They would be able to hypothesize new related problems							
Prerequisites (if any)								

Section-A

Essentials of Atmospheric Physics

Structure of the atmosphere: troposhere, stratopshere, mesosphere, thermosphere, Composition of air, Greenhouse effect and enhanced greenhouse effect, Transport of matter, energy and momentum in nature, Stratification and stability of atmosphere, Laws of motion, hydrostatic equilibrium. Elements of weather and climate of India.

Section-B

Solar and Terrestrial Radiation

Physics of radiation, Interaction of light with matter, Rayleigh- and Mie-scattering, Laws of radiation (Kirchoffs law, Planck's law, Wien's displacement law, etc.), Solar and terrestrial spectra, UV radiation, Ozone depletion problem, IR absorption energy balance of the earth atmosphere system.

Section-C

Atmospheric Pollution and Degradation

Elementry fluid dynamics, Diffusion. Turbulence and turbulent diffusion, Factors governing air, water and noise pollution air and water quality standards, Waste disposal, Heat island dffect, Land and sea breeze Puffs and plumes, Gaseous and particulate matters, Wet and dry deposition

Residence time and reaction rates of pollutants, sulphur compounds, nitrogen compounds, carbon compounds, organic compounds, aerosols, toxic gases and radio active particles trace gases.

Section-D

Global and Regional Climate

Elements of weather and climate. Stability and vertical motion of air, Horizontal motion of air and water, General circulation & climate, Pressure gradient forces, Viscous forces, Inertia, Reynolds number, Energy balance-a zero-dimensional Greenhouse model, Global climate models.

Reference and Text Books

- 1. Meteorology for Scientists & Engineers: Ronald B. Still, Brooks/ Cole Cengage Learning 1995.
- 2. Environmental Physics : Edbert B and Reink V Groundelle, John Wiley

B.Sc.(H) Physics ManavRachna University

3. The Physics of Atmosphere : J.T. Hougtion, Cambridge Univ. Press, 1977.

Course Code	Course Name	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
	_	CO1	3	3	3	-	1	3	1	3	-	3	1	-	2	2
РНН31	Atmosph	CO2	3	3	3	-	1	3	1	-	2	3	-	2	2	2
0B-T	eric Physics	CO3	3	3	3	-	1	3	1	-	2	2	-	2	2	2
	I Hybres	CO4	3	3	3	-	1	3	3	-	2	3	-	2	2	2

Course Title/Code	Atmospheric Physics Lab (PHH310B-P)								
Course Type	Elective (Deptt.)								
L-T-P Structure	0-0-2								
Credits	1								
Course Objective	To demonstrate various laws and concepts of essentia Physics.	ls of Atmospheric							
	Course Outcomes (COs)	Mapping							
СО	Ability to demonstrate various laws and concepts of essentials of Atmospheric Physics and further analyze and solve related problems.	Skill Development							
Prerequisites (if any)									

LIST OF EXPERIMENTS

- 1. To study and analyze the diurnal features of Aerosols (PM10, PM2.5, SOx, NOx etc.,) using Central Pollution control board (CPCB) data.
- 2. To analyze the Air Quality Index (AQI) of different regions using Central Pollution control board (CPCB) data.
- 3. To determine the coefficient of viscosity and critical velocity of water using Poiseulle's method
- 4. To analyze the variations in PM10, PM2.5, CO2, humidity, temperature with changing spatial locations using Airveda High Accuracy Smart Air Quality Monitoring instrument
- 5. To study the change in concentration of PM10, PM2.5, CO2 during the burning of fragrance sticks/smoke using Airveda High Accuracy Smart Air Quality Monitoring instrument.
- 6. Heat transfer by radiation:
- a) Compare heat transfer between different material surfaces and the black body surface by radiation.
- b) To find the emissivity of different material surfaces.
- 7. Heat transfer by conduction:
- a) To find the thermal conductivity of a material by the two slabs guarded hot plate method.
- b) To find the thermal resistance of the sample.

- 8. Heat transfer by natural convection:
- a) To determine the overall heat transfer coefficient at the surface of a given vertical metal cylinder by the natural convection method.
- b) To determine the value of the Nusselt number.
- 9. Photoelectric effect:
- a) To understand the phenomenon of the Photoelectric effect as a whole.
- b) To draw kinetic energy of photoelectrons as a function of frequency of incident radiation.
- c) To determine the Planck's constant from kinetic energy versus frequency graph.
- d) To plot a graph connecting photocurrent and applied potential.
- e) To determine the stopping potential from the photocurrent versus applied potential graph.
- 10. Study of phase change:
- a) To study the phase change of a substance from liquid to solid by plotting the cooling curve.
- b) To determine the melting point of the given substance and to find out the transition time.
- 11. Determination of Stefan- Boltzmann constant σ.
- 12. To verify inverse square law of radiation using a photoelectric cell.

Course Code	Course Name	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH31 0B-P	Atmosph eric Physics LAB	СО	3	3	3	ı	1	3	1	3	1	3	1	ı	2	2

Course Title/Code	Computational Condensed Matter Physics	(PHH311B-T)							
Course Type	Elective (Deptt.)								
L-T-P Structure	3-1-0								
Credits	4								
Course Objective	To handle the tools of classical mechanics, quantum mechanics and computers in order to develop to condensed materials in terms of structure and dynamics system under consideration.	the understanding of							
	Course Outcomes (COs)	Mapping							
CO1	Ability toperform structural and dynamics calculations for various molecular systems based on molecular mechanics.	Skill Development							
CO2	Ability toderive the macroscopic properties of any physical system that has a large number of degrees of freedom from microscopic constituents on the basis of statistical ensembles.	Skill Development							
СОЗ	Ability tounderstand the development of different quantum mechanical theories and their role in understanding computational physics.	Skill Development							
CO4	Ability toperform various molecular dynamics simulations.	Skill Development							
Prerequisites (if any)									

Section - A

MOLECULAR MECHANICS

Perspective, the basic principles of molecular mechanics, examples of the use of molecular mechanics, geometries calculated by molecular mechanics, frequencies calculated by molecular mechanics, strength and weakness of molecular mechanics. The application of the Schrödinger equation to chemistry by Hückel, The Extended Hückel Method.

Section - B

STATISTICAL ENSEMBLES

Introduction to Ensembles: microcanonical ensemble; Canonical ensemble, canonical distribution, Mean values and fluctuations; Grand Canonical Ensemble, Grand Canonical distribution, Fluctuation in the number of particles of a system in a Grand Canonical ensemble; Reduction of Gibb's distribution to Maxwell and Boltzmann distributions, Boltzmann distribution and its experimental verification.

Section - C

SEMIEMPIRICAL AND MOLECULAR-MECHANICS TREATMENTS OF MOLECULES

ab initio calculations: Perspective, the basic principles of the ab initio method, basis sets, Post-HF calculations: electron correlation, applications of the ab initio method, strengths and weaknesses of ab initio calculations; **Semi empirical calculations**: Perspective, the basic principles of SCF SE methods, applications of SE methods, strengths and weaknesses of SE methods.**DFT**: Perspective, the basic principles of density functional theory, applications of density functional theory, strengths and weaknesses of DFT.

Section - D

MOLECULAR DYNAMICS SIMULATIONS

Introduction to linux, Installation and running a program, Preparation of input for different open source codes, calculation of various properties of molecules, clusters, crystals and surfaces, visualization of output.

Text and Reference Books

- 1. J.M. Ziman, Principles of the Theory of Solids, Cambridge University Press
- 2. M. Marder, Condensed Matter Physics, Wiley
- 3. P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press
- 4. Errol lewars, Introduction to the theory and applications of molecular and quantum mechanics.
- 5. Ira N. Levine, Quantum chemistry
- 6. B. B. Laud, Fundamentals of statistical mechanics
- 7. S. Raimes: Many Electron Theory
- 8. N. H. March and M. Parrinello: Collective Effects in Solids and Liquids
- 9. C. Kittel: Quantum Theory of Solids
- 10. P. Fazekas, Lecture Notes on Electron Correlation & Magnetism, World Scientific

Course Code	Course Name	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
	Computati	CO1	3	3	3	-	1	3	1	3	-	3	1	-	2	2
PHH31	onal	CO2	3	3	3	-	1	3	1	-	2	3	-	2	2	2
1B-T	Condensed Matter	CO3	3	3	3	-	1	3	1	-	2	2	-	2	2	2
	Physics	CO4	3	3	3	-	1	3	3	-	2	3	-	2	2	2

Course Title/Code	Computational Condensed Matter Physics La	b (PHH311B-P)
Course Type	Elective (Deptt.)	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To apply the tools of classical mechanics, quantum mechanics and computers in order to develop to condensed materials in terms of structure and dynamic system under consideration.	the understanding of
	Course Outcomes (COs)	Mapping
СО	Ability to apply the computational package to determine different properties of materials.	Skill Development
Prerequisites (if any)		

List of Experiments

- 1. Introduction to ghemical: input, output
- 2. Preparation of input of molecules, cluster for GAMESS (detail description of different keywords)
- 3. Structural, vibrational study of water using DFT.
- 4. Vibrational study of water using DFT.
- 5. Structural, vibrational study of benzene using DFT.
- 6. Vibrational study of benzene using DFT.
- 7. Study of structural change in quartz under pressure, by classical molecular dynamics.
- 8. UV-vis spectrum of dye by DFT

Course Code	Course Name	Cours e Outco me		PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH31 1B-P	Computati onal Condensed Matter Physics LAB	СО	3	3	3	1	1	3	1	3	1	3	1	-	2	2

Course Title/Code	Laser: Fundamentals and Its Applications	(PHH312B-T)
Course Type	Elective (Deptt.)	
L-T-P Structure	3-1-0	
Credits	4	
Course Objective	To understand the basic principles of how lasers properties. On successful completion of this course able to understand the basics of lasers, the techniclasers' design, and applications of lasers in spemedicine, biology, military and other areas.	, a student should be ques behind different
	Course Outcomes (COs)	Mapping
CO1	Ability to discuss and explain the basic principles of laser.	Employability and Skill Development
CO2	Ability to discuss and explain different types of lasers.	Employability and Skill Development
CO3	Ability to discuss and explain different types of laser systems	Employability and Skill Development
CO4	Ability to discuss basic and technological applications of lasers.	Employability and Skill Development
Prerequisites (if any)		

Section-A

Basic Laser Characteristics

Introduction; Importance: Why laser? Unique properties of lasers; Brief history of laser development; Laser basics; concept of coherence, absorption, spontaneous emission and stimulated emission processes, relation between Einstein's A and B coefficients, population inversion, Amplification of stimulated emission; pumping, gain, optical cavities.

Section-B

Basic Laser Principle

B.Sc.(H) Physics ManavRachna University

Coherent radiation, standing waves and modes; the kinetics of laser emission; Rate equations; Threshold conditions; Pulsed and continuous wave laser emission; various pulsing techniques: cavity dumping, Q-switching and mode-locking, Transitions, lifetimes and line widths: Three level laser, Four-level laser, emission linewidth;

Section-C

Laser Systems

Properties of laser light: monochromaticity, spatial and temporal coherence, intensity, beamwidth Similarity transforms. Introduction to general lasers and their types. CW & Pulsed Lasers, atomic, ionic, molecular, excimer, liquid and solid state Lasers and systems, short pulse generation and Measurement.

Section-D

Laser Applications

Applications of lasers in spectroscopy, chemistry, biology, medical sciences and other fields. Ultrafast Phenomenon: Principle of generation of ultrafast pulses (mode locking), basic concepts for measurement of fast processes, Streak technique, Stroboscopy, sampling technique, nonlinear optical methods for measuring ultrashort pulses.

Text and Reference Books

- 1. P.W. Milonni and J.H. Eberly, **Laser Physics**, John Wiley & Sons, 2010.
- 2. O. Svelto, **Principles of Lasers**, Springer, 3rd Edition 2007.
- 3. A.E Siegman, Lasers, University Science Books, 1986.
- 4. B.E.A. Saleh and M.C. Teich, **Fundamentals of Photonics**, Wiley Interscience, New York 1991.
- 5. K.R. Nambiar, "Laser Principles, Types and Application" New Age International.
- 6. S. A. Ahmad, "Laser concepts and Applications" New Age International.

Course Code	Course Name	Cours e Outco me		PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
	Laser:	CO1	3	3	3	-	1	3	1	3	-	3	1	-	2	2
DIIII21	Fundamen	CO2	3	3	3	-	1	3	1	-	2	3	-	2	2	2
PHH31 2B-T	tals and Its	CO3	3	3	3	-	1	3	1	-	2	2	-	2	2	2
	Applicatio ns	CO4	3	3	3	-	1	3	3	-	2	3	-	2	2	2

Course Title/Code	Laser: Fundamentals and Its Applications La	b (PHH312B-P)
Course Type	Elective (Deptt.)	
L-T-P Structure	0-0-2	
Credits	1	
Course Objective	To use lasers for different applications.	
	Course Outcomes (COs)	Mapping
СО	Ability to use lasers for various basic and technical applications.	Skill Development
Prerequisites (if any)		

List of Experiments

- 1. Measuring the slit-width using Diffraction experiment.
- 2. Measuring the diffraction pattern using single slit.
- 3. Measuring the diffraction pattern using the double slit.
- 4. Measuring the diffraction pattern using the Mesh.
- 5. Optical fiber losses experiment.
- 6. Optical fiber experiment; measuring the numerical aperture
- 7. Optical fiber experiment; measuring the bending loss.
- 8. Energy band measurement for semiconductor diode/ diode laser

Course Code	Course Name	Cours e Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PO 13	PO 14
PHH31 2B-P	Laser: Fundamen tals and Its Applicatio ns LAB	СО	3	3	3	1	1	3	1	3	-	3	1	ı	2	2

Course Title/Code	Career Skill - III (CDO305)	
Course Type	Allied	
L-T-P Structure	2-0-0	
Credits	0	
Course Objective		
	Course Outcomes (COs)	Mapping
CO1	Ability to solve problems related to permutation, combination and probability.	Skill Development and Employability
CO2	Ability to examine and apply logical reasoning to solve verbal &non verbal reasoning questions.	Skill Development and Employability
CO3	Ability to attempt aptitude questionnaire during placement drives, competitive examination prelims etc.	Skill Development and Employability
CO4	Ability of resume building and to draft effective cover letters.	Skill Development and Employability
CO5	Ability to participate effectively and confidently in a Group Discussion.	Skill Development
CO6	Ability to manage interviews effectively.	Skill Development and Employability
Prerequisites (if any)	Career Skill II (CDO303)	

Part A – Quantitative Aptitude

Unit 1: Permutation and Combination

- 1.1 Principal of counting and Basic formulas
- 1.2 Arrangements, Selection and Selection + Arrangement.

1.3 Linear/Circular arrangements, Digits and Alphabetic Problems and Applications.

Unit 2 : Probability

- 2.1 Events and Sample Space, Basic Formulas.
- 2.2 Problems on Coins, Cards and Dices.
- 2.3 Conditional Probability, Bayes' Theorem and their Applications.

Unit 3: Verbal & Non-Verbal Reasoning

- 3.1 Calendar
- 3.2 Puzzle Test
- 3.3 Non-Verbal Reasoning

Part B - Employability Enhancement

Unit 4: Professional Writing

- 4.1. Profiling on Social Sites: LinkedIn, Facebook, Instagram
- 4.2. Cover Letter/Emails
- 4.3. Resume Writing

Unit 5: Group Discussions

- 5.1. Do's and Dont's of a Group Discussion
- 5.2. Roles played in a Group Discussion
- 5.3. Tips for Cracking a Group Discussion

Unit 6: Managing Interviews

B.Sc.(H) Physics ManavRachna University

- 6.1. Developing the employability mindset
- 6.2. Preparing for Self -Introduction
- 6.3. Researching the employer
- 6.4. Portfolio Management
- 6.5. Answering Questions in an Interview

Course Code	Cour se	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
		CO1	1	-	-	1	-	1	-	-	-	-	-	1	-	1
CDO3 r Skill		CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1
	Caree	CO3	1	-	-	1	-	1	-	-	-	-	-	1	-	1
03	III	CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2
		CO5	1	-	-	1	-	1	-	-	1	3	-	2	1	2
		CO6	1	2	-	1	1	1	1	1	1	3	1	2	1	2

Course Title/Code	Major Project (PHN307)	
Course Type	Core	
L-T-P Structure	0-0-16	
Credits	8	
Course Objective	To make the students familiar with the cutting e	dge research.
	Course Outcomes (COs)	Mapping
СО	Ability to apply characterization and analysis tools in different areas of Physics	Employability and Skill Development
Prerequisites (if any)		

Cours e Code	Cour se Name	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PO1 4
РНН3 07	Majo r Proje ct	CO	3	3	3	3	1	3	1	3	3	3	3	3	3	3

Courses Code	Course	Cours e Outco mes	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	PO 10	PO 11	PO 12	PO 13	PO 14
	Mathemat	CO1	3	-	1	3	ı	3	3	-	-	3	-	ı	ı	-
PHH104B-T	ical	CO2	3	-	ı	3	ı	3	3	-	ı	3	-	-	1	-
	Physics-I	CO3	3	-	-	3	-	3	3	-	-	3	-	-	-	-
		CO4	3	-	ı	3	ı	3	3	-	-	3	-	ı	ı	-
РНН104В-Р	Mathemati cal Physics- I Lab	CO	3	-	ı	3	ı	3	3	-	-	3	-	ı	ı	-
		CO1	3	3	3	-	-	1	1	-	2	3	-	2	2	2
PHH105B-T	Mechanics	CO2	3	3	3	-	1	-	-	-	2	3	-	1	2	2
11111103D-1	Michanics	CO3	3	3	3	1	1	-	-	3	-	3	1	-	2	2
		CO4	3	3	3	-	1	-	1	-	2	3	-	2	2	2
PHH105B-P	Mechanics	CO1	3	3	3	-	-	1	1	-	2	3	-	2	2	2
		CO1	2	-	-	1	1	-	-	-	-	-	-	-	-	-
CHH105B-T	Essential of		2	-	-	1	1	-	-	-	-	-	-	2	1	-
	chemistry	CO3	2	-	-	1	1	-	-	-	-	-	-	2	1	-
		CO4	2	-	-	1	1	-	-	-	-	-	-	2	1	-
CHH105B-P	Essential of chemistry Lab	CO	2	-	-	1	1	-	-	-	-	-	-	2	1	-
	Programmi	CO1	3	3	2	-	-	-	-	-	3	3	3	3	3	3
	ng for	CO2	3	3	3	-	-	-	-	-	2	2	2	2	2	2
CSH105B-T	Problem	CO3	3	3	3	-	-	-	-	-	3	3	2	2	2	2
	solving using C	CO4	3	3	3	-	-	-	-	-	2	2	3	2	2	2
	Programmi	CO1	3	3	2	-	-	-	-	-	3	3	3	3	3	3
CCIIIAED D	ng for	CO2	3	3	3	-	-	-	-	-	2	2	2	2	2	2
CSH105B-P	Problem solving	CO3	3	3	3	-	-	-	-	-	3	3	2	2	2	2
	using C	CO4	3	3	3	-	-	-	-	-	2	2	3	2	2	2
	Communic	CO1	1	-	-	-	-	-	-	-	-	-	3	2	-	1
HLS102	ative	CO2	-	-	-	-	-	-	-	-	-	-	3	2	-	1
	English	CO3	-	-	-	-	-	-	-	-	-	-	3	2	-	1
		CO4	-	-	-	-	-	-	-	-	-	-	3	2	-	1
	Electricity	CO1	3	3	2	1	2	2	-	-	2	2	2	2	2	2
PHH107B-T	and	CO2	3	3	2	1	2	2	-	-	2	2	2	2	2	2
	Magnetism	CO3	2	3	2	1	2	2	-	-	2	3	3	3	2	2
		CO4	2	3	2	1	2	2	-	-	2	3	3	3	2	2

	Electricity	CO1	3	3	2	1	2	2	-	-	2	2	2	2	2	2
PHH107B-P	and															
	Magnetism Lab	CO2	3	3	2	1	2	2	-	-	2	2	2	2	2	2
		CO1	3	3	-	-	-	1	-	2	-	1	-	1	-	-
РНН108В-Т	Wave	CO2	3	3	2	-	-	2	•	3	•	2	-	-	-	-
1 1111100D-1	Optics	CO3	1	3	2		1	2		2	2	2	-	1	1	1
		CO4	-	-	3	2	2	2	-	3	-	3	-	1	1	1
		CO1	3	3	-	-	-	1	-	2	-	1	-	1	-	-
PHH108B-P	Wave	CO2	3	3	2	-	-	2	-	3	•	2	-	-	-	-
11111100D-1	Optics Lab	CO3	1	3	2		1	2		2	2	2	-	1	1	1
		CO4	-	-	3	2	2	2	-	3	-	3	-	1	1	1
	Mathamati	CO1	3	3	3	-	-	3	3	-	-	3	-	-	-	-
PHH109B-T	Mathemati cal Physics	CO2	3	3	3	-	-	3	3	-	-	3	-	-	-	-
11111109D-1	II	CO3	3	3	3	-	-	3	3	-	-	3	-	-	-	-
		CO4	3	3	3	-	-	3	3	-	-	3	-	-	-	-
	Mathemati															
PHH109B-P	cal Physics	CO	3	3	3	-	-	3	3	-	-	3	-	-	-	-
	II Lab	~~.			_											
CTTT-1.0-	Environme	CO1	-	-	3	-	-	-	-	-	-	•	3	2	-	3
СНН137	ntal	CO2	-	-	3	-	-	-	-	-	-	-	2	3	-	2
	Science	CO3	-	-	3	-	-	-	-	-	-	-	3	3	-	3
		CO1	3	3	-	-	-	2	-	1	-	2	-	2	-	2
PHH201B-T	Quantum	CO2	2	2	2	-	3	3	-	2	•	3	-	-	-	1
	Mechanics	CO3	2	2	3	-	2	3	-	3	3	3	-	2	1	2
	0 1	CO4	-	-	-	3	3	3	-	2	-	3	-	2	2	2
PHH201B-P	Quantum Mechanics	CO1	3	3	-	-	-	2	-	1	-	2	-	2	1	2
PHH201D-P	Lab	CO2	2	2	2	-	3	3	-	2	•	3	-	-	2	1
	Mathamati	CO1	3	3	3	-	-	3	2	-	-	3	-	-	-	-
РНН202В-Т	Mathemati cal Physics	CO2	3	3	3	-	-	3	2	-	-	3	-	-	-	-
11111202D-1	III	CO3	3	3	3	-	-	3	3	-	•	3	-	-	-	-
		CO4	3	2	3	-	-	3	3	-	-	2	-	-	-	-
	Mathemati															
PHH202B-P	cal Physics	CO	3	3	3	-	-	3	2	-	-	3	-	-	-	-
	III Lab	001									•					
	Electromag	CO1	3	3	2	1	2	2	2	2	2	2	-	-	-	-
РНН203В-Т	netic	CO2	3	2	3	2	2	3	3	2	1	3	-	-	-	-
	theory	CO ₃	2	3	2	1	2	3	3	3	2	3	-	-	-	-
		CO4	3	3	2	2	2	3	2	3	2	2	-	-	-	-
РНН203В-Р	Electromag netic theory Lab	CO	3	3	2	1	2	2	2	2	2	2	-	-	-	-

		CO1	1	1		_	1	_	1	-	1	1	1	_	1	-
FLS103/FLS101	French	CO2	1	1	-	-	1	-	1	-	1	1	1	-	1	-
/FLS103/FLS101	1/Spanish	CO3	1	1	_	-	1	_	1	-	1	1	1	-	1	-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I/German I	CO4	1	1	-	-	1	-	1	-	1	1	1	-	1	-
		CO1	2	1	_	-	1	_	1	-	1	1	1	•	1	-
	APPLIED	CO2	1	2	_	_	1	_	1	_	1	1	1	_	1	-
EDS288	PHILOSO	CO3	1	1	_	_	2	_	1	-	1	1	1	-	2	-
	PHY	CO4	1	1	-	-	1	-	1	-	1	1	2	_	1	-
		CO1	2	1	-	-	1	-	1	-	1	1	1	_	1	-
EDGAGG	Applied	CO2	1	2	-	-	1	-	1	-	1	1	1	-	1	•
EDS289	Psychology	CO3	1	1	-	-	2	-	1	-	1	1	1	-	2	-
		CO4	1	1	-	-	1	-	1	-	1	1	2	-	1	-
		CO1	2	1	-	-	1	-	1	-	1	1	1	-	1	-
EDC200	APPLIED	CO2	1	2	-	-	1	-	1	-	1	1	1	-	1	-
EDS290	SOCIOLO GY	CO3	1	1			2		1		1	1	1	•	2	•
	G1	CO4	1	1	-	-	1	-	1	•	1	1	2	-	1	•
	Daging of	CO1	2	1	-	-	1	-	1	-	1	1	1	-	1	-
MCS231	Basics of Economics	CO2	1	2	-	-	1	-	1	-	1	1	1	-	1	-
WIC5251	MCS231	CO3	1	1	-	-	2	-	1	-	1	1	1	-	2	•
	1,100201	CO4	1	1	-	-	1	-	1	-	1	1	2	-	1	-
		CO1	2	1	-	-	1	-	1	-	1	1	1	-	1	•
MCS232	Fundament	CO2	1	2	-	-	1	-	1	-	1	1	1	-	1	-
10100232	als of	CO3	1	1	-	-	2	-	1	-	1	1	1	-	2	-
	Finance	CO4	1	1	-	-	1	-	1	-	1	1	2	-	1	-
		CO1	1	-	-	-	-	1	-	-	-	-	-	1	-	1
	Quantitativ	CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1
CDO203	e Aptitude- I	CO3	1	-	-	-	-	1	-	-	-	-	-	1	-	1
		CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2
		CO1	3	-	3	-	-	2	-	3	-	-	-	3	_	-
	Numerical	CO2	3	-	3	-	-	2	-	3	-	-	-	3	-	-
MAH411 –T	Analysis	CO3	3	-	3	-	-	3	-	3	-	-	-	2	-	-
		CO4	3	-	3	-	-	3	-	2	-	-	-	3	-	-
		CO1	3	-	3	-	-	2	-	3	-	-	-	3	-	-
MAH411 –P	Numerical Analysis Lab	CO2	3	-	3	-	-	2	-	3		•	•	3	-	•

		CO1	3	3	2	2	2	3		2		2	2	2	2	
	Thermody	CO ₂	3	3	3	3	2	3	-	3	-	2	2	3	2	-
РНН205В-Т	namics	CO3	3	3	2	2	2	3	-	2	-	2	1	2	1	_
		CO4	3	3	2	1	2	3	-	2	-	2	1	2	1	-
РНН205В-Р	Thermody namics Lab	CO1	3	3	2	2	2	3		2		2	2	2	2	-
		CO1	2	3	-	-	2	3	-	2	-	-	3	-	-	-
РНН206В-Т	Solid State	CO2	3	3	3	-	3	2	-	2	-	2	-	1	2	-
PHH200D-1	Physics	CO3	3	3	3	•	2	2	•	2	•	2	•	2	3	1
		CO4	3	3	3	-	3	3	-	3	-	2	-	1	1	1
	Solid State	CO1	2	3	-	-	2	3	-	2	-	-	3	-	-	-
PHH206B-P	Physics	CO2	3	3	3	-	3	2	-	2	-	2	-	1	2	-
	Lab	CO3	3	3	3	-	2	2	-	2	-	2	-	2	3	1
	Environme	CO1	-	-	3	-	-	-	-	-	-	-	3	2	-	3
	ntal Ethics	CO2	-	-	3	-	-	-	-	-	-	-	2	3	-	2
	&Sustaina ble Developme nt	CO3	-	-	3	-	-	1	1	-	1	1	3	3	1	3
		CO1	2	1	-	-	-	-	2	-	-	1	-	3	-	-
LWS323	Cyber crime and	CO2	3	2	1	-	-	1	1	-	2	ı	ı	1	1	-
L VV 5323	laws	CO3	3	1	2	-	-	-	-	1	-	-	-	2	1	-
		CO4	3	1	-	-	-	-	-	-	-	-	-	3	1	-
		CO1	1	-	-	-	-	1	-	-	-	-	-	1	-	1
	O	CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1
CDO204	Quantitativ e Aptitude-		1	-	-	-	-	1	-	-	-	-	-	1	-	1
	II	CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2
		CO5	1	2	-	1	1	1	1	1	1	3	1	2	1	2
		CO1	1	-	-	-	-	1	-	-	-	-	-	1	-	1
CDO205	Career Skill I	CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1
		CO3	1	-	ı	-	-	1	ı	-	ı	-	ı	1	ı	1

			1	Ι_	l _	1		_	_	_	1	3	_	2	1	2
		CO4	1	_	-	1	_	_	_	_	1		_		1	
		CO5	1	-	-	1	-	1	-	-	1	3	-	2	1	2
		CO6	1	2	-	1	1	1	1	1	1	3	1	2	1	2
		CO1	3	3	3	-	3	3	3	-	-	2	-	-	1	1
D1111404D F	Statistical	CO2	3	3	3	-	3	3	3	-	-	2	-	-	1	1
РНН301В-Т	Physics	CO3	3	3	3	-	3	3	3	-	-	2	-	-	1	1
		CO4	3	3	3	-	3	3	2	-	-	2	-	-	1	1
РНН301В-Р	Statistical Physics Lab	СО	3	3	3	-	3	3	2	-	-	2	-	-	1	1
		CO1	3	3	3	3	-	2	3	2	3	3	2	2	2	2
	Digital	CO2	3	3	3	3	-	3	3	3	3	3	2	2	2	2
РНН302В-Т	Digital Electronics	CO3	3	3	3	3	-	3	3	3	3	3	2	2	3	2
	Electronics	CO4	3	3	2	2	-	3	3	3	3	3	3	3	3	3
		CO5	3	3	3	3	-	3	3	3	3	2	2	2	2	2
РНН302В-Р	Digital Electronics LAB	CO	3	3	3	3	-	3	3	3	3	2	2	2	2	2
	Condensed	CO1	3	3	3	-	3	3	-	-	-	3	-	-	-	-
РНН303В-Т	Matter	CO2	3	3	3	-	3	3	-	-	-	3	-	-	-	-
1111303B-1	Physics	CO3	3	3	3	-	3	3	-	-	-	3	_	-	-	-
	113,5105	CO4	3	3	3	-	3	3	-	-	-	3	-	-	-	-
		CO1	3	3	3	-	2	2	-	-	-	1	-	1	1	-
РНН304В-Т	Modern	CO2	3	3	2	-	2	2	-	-	-	1	-	1	1	-
11113041	Physics	CO3	3	3	3	-	2	2	-	-	-	2	-	1	1	-
		CO4	3	3	3	-	2	2	-	-	-	1	_	1	1	-
РНН304В-Р	Modern Physics LAB	CO	3	3	3	-	2	2	-	-	-	1	-	1	1	-
		CO1	1	-	-	-	-	1	-	-	-	-	-	1	-	1
		CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1
	Career	CO3	1	-	-	-	-	1	-	-	-	-	-	1	-	1
CDO303	Skill II	CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2
		CO5	1	-	-	1	-	1	-	-	1	3	-	2	1	2
		CO6	1	2	-	1	1	1	1	1	1	3	1	2	1	2
РНН306В-Т	Electronic	CO1	3	3	_	_	3	3	_	_	_	3	_	1	_	2
I IIIIOUUD-I	Licen onic	-	5	5					l	l	l		l	1	l	

	Devices	CO2	3	3	2	_	2	2	_	_	_	2	_	_	_	2
		CO3	3	2	2	-	3	2	_	-	2	2	_	_	_	2
		CO4	3	2	-	1	2	1	-	-	-	1	_	_	-	2
DIHI20/D D	Electronic	CO	3	3			3	3				3		1		2
РНН306В-Р	Devices Lab	CO	3	3	-	-	3	3	-	-	-	3	-	1	1	2
		CO1	3	3	3	-	1	3	1	3	-	3	1	-	2	2
РНН310В-Т	Atmospher	CO2	3	3	3	-	1	3	1	-	2	3	-	2	2	2
FHH310D-1	ic Physics	CO3	3	3	3	-	1	3	1	-	2	2	-	2	2	2
		CO4	3	3	3	-	1	3	3	-	2	3	-	2	2	2
РНН310В-Р	Atmospher ic Physics	СО	3	3	3	_	1	3	1	3	_	3	1	_	2	2
11113101-1	LAB	CO)	3	3	_	1	3	1	3	_	3	1	_	2	2
	Computati	CO1	3	3	3	-	1	3	1	3	-	3	1	-	2	2
	onal	CO2	3	3	3	-	1	3	1	-	2	3	-	2	2	2
РНН311В-Т	Condensed	CO3	3	3	3	-	1	3	1	-	2	2	-	2	2	2
	Matter Physics	CO4	3	3	3	-	1	3	3	-	2	3	-	2	2	2
РНН311В-Р	Computati onal Condensed Matter Physics LAB	СО	3	3	3	-	1	3	1	3	-	3	1	-	2	2
	Laser:	CO1	3	3	3	-	1	3	1	3	_	3	1	-	2	2
	Fundament		3	3	3	-	1	3	1	-	2	3	_	2	2	2
РНН312В-Т	als and Its	CO3	3	3	3	_	1	3	1	_	2	2	_	2	2	2
	Applicatio ns	CO4	3	3	3	-	1	3	3	-	2	3	-	2	2	2
РНН312В-Р	Laser: Fundament als and Its Applicatio ns LAB	СО	3	3	3	-	1	3	1	3	-	3	1	-	2	2
		CO1	1	-	-	-	-	1	-	-	-	-	-	1	1	1
		CO2	1	-	-	2	-	-	-	-	-	-	-	-	-	1
	Career	CO3	1	-	-	-	-	1	-	-	-	-	-	1	-	1
CDO303	Skill III	CO4	1	-	-	1	-	-	-	-	1	3	-	2	1	2
		CO5	1	-	-	1	-	1	-	-	1	3	-	2	1	2
		CO6	1	2	-	1	1	1	1	1	1	3	1	2	1	2

PHH307 Major Project	СО	3	3	3	3	1	3	1	3	3	3	3	3	3	3	
-------------------------	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--